
 Development of Situation-Aware Application Software for
Ubiquitous Computing Environments

Stephen S. Yau, Yu Wang, and Fariaz Karim

Computer Science and Engineering Department
Arizona State University
Tempe, AZ 85287, USA

{yau, wangyu, karim}@asu.edu

Abstract

Ubiquitous computing represents the concept of
computing everywhere, making computing and
communication essentially transparent to the users.
Applications in this type of environments are context-
sensitive. They use various contexts to adaptively
communicate with each other across multiple
network environments, such as mobile ad hoc
networks, Internet, and mobile phone networks. The
property of context-sensitivity often becomes
inadequate in these applications, where combinations
of multiple contexts and users’ actions need to be
analyzed over a period of time. Situation-awareness
in application software is considered as a desirable
property to overcome this limitation. In addition to
being context-sensitive, situation-aware applications
can respond to both current and historical
relationships of specific contexts and device-actions.
Currently, no well-defined concept of situation and
no general method exist to facilitate the development
of situation-aware application software for ubiquitous
computing environments. In this paper, the concept
of situation is formalized, and an approach to
developing situation-aware application software is
presented. The approach utilizes our Reconfigurable
Context-Sensitive Middleware, and is illustrated by
an example on Smart Classroom.

Keywords: Ubiquitous computing environments,
situation-awareness, situation-aware interface
definition language, reconfigurable context-sensitive
middleware, mobile ad hoc networks, and Smart
Classroom.

1. Introduction

Ubiquitous computing (ubicomp) [1] represents the
concept of computing everywhere, making computing
and communication essentially transparent to the
users. Applications in this type of environments are
context-sensitive, which means they use various
contexts to adaptively communicate with each other
in mobile ad hoc networks. Construction of this type

of environments is now possible due to rapid
progress in inexpensive, short range, and low-power
wireless communication hardware and their
continuing steady integration with various multi-

protocol and multi-network environments. User
applications in a typical ubicomp environment, as
shown in Figure 1, have the following characteristics
[2,3]:

Grid/Internet

Figure 1: Multi-Protocol and Multi-Network
Ubiquitous Computing Environments.

Short Range and Low Power
Ad Hoc Networks

IEEE 802.11
Bluetooth, etc.

Mobile Phone Networks
GSM, UMTS, GPRS, etc.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

 Context-sensitivity: Context-sensitivity is the
capability of a device to detect its current context and
changes in contextual data.
 Situation-awareness: Situation-awareness is the

capability of a device to capture and analyze the
relationship among multiple contexts and actions
over a period of time.
 Ad hoc communication: Communication

channels among application software tend to be
instantaneously established and terminated due to
changing contexts, device mobility, and resource
availability.

While context-sensitive application software is
adaptive, having only context-sensitivity is often
inadequate if the application requirements need to
consider the relationship between various contexts
and history of users’ and applications’ actions over a
period of time. For example, a location-aware tour
guide as described in [4] is a context-sensitive
application. It can be made more adaptive and
intelligent if it can track and analyze individual user’s
past actions in different locations. Using such
relationship between the context and actions enables
application software to learn new information and use
it with historical data to provide appropriate
responses according to individual users’ preferences.
Clearly, situation-awareness implies context-
sensitivity, but not vice versa.

Although the idea of situation has been discussed in
literatures [5-7], they mostly end up as ad hoc and
inconsistent treatments. In [5], situation is used to
indicate user tasks, [6] refers situation as only an
environmental context, and [7] considers a
combination of these two. Context Toolkit [8]
provides context widget components to isolate the
details of context sensing from the application
software. While this approach eases the effort
required to develop context-sensitive applications, it
does not provide a built-in capability to analyze
multiple contexts and actions during execution. In [9]
we presented a method to generate object-specific
context-reflectors, using our Reconfigurable Context-
Sensitive Middleware (RCSM) [10,11], capable of
finding occurrence patterns of multiple contexts
based on object interface specification. We also
studied the effect of runtime change in context on
objects’ invocation and presented an algorithm to
show how to dynamically adapt the sensitivity of the
entire application without incurring any modification
in individual objects.

In this paper we will define situation and present a
method to develop situation-aware application
software capable of analyzing both contexts and user
actions, and to incorporate a mechanism in RCSM to
enable objects to utilize their own situations in order to

communicate-with-other-situation-aware-objects.

2. Our Approach to Developing Situation-Aware
Application Software using RCSM

Our approach to developing situation-aware
application software for ubicomp environment
includes the following major steps:

1. To generate a situation-aware object interface
specification. To facilitate this, we have developed a
Situation-Aware Interface Definition Language (SA-
IDL) based on our definition of situations.
2. To generate a Situation-Aware Adaptive Object
Container (SA-ADC) for runtime analysis and
detection of application-specific situations.
3. To generate the code of the situation-aware
objects whose interfaces are defined in Step 1.

The development service provided in our current
Reconfigurable Context-Sensitive Middleware
(RCSM) [10,11] is not sufficient to perform the
above steps. In addition, during application software
execution, we need to provide runtime services to i)
periodically propagate the necessary sensor data to
situation-aware application software, ii) discover
compatible application objects in other devices, and
iii) to provide a protocol for establishing remote
communication links among situation-aware objects.
Our RCSM architecture has the capability to perform
i) and ii). We will extend RCSM architecture to
address the above development and runtime services,
and will refer this extended version as RCSM+.

We will elaborate Steps 1and 2 in Section 3, discuss
the deployment and runtime services in RCSM+ in
Section 4. We will include a brief discussion on our
Smart Classroom test bed in each section to illustrate
the corresponding steps.

3. Situation-Aware Interface Specification and SA-
ADC Generation

Situation-aware interface reflects the application-
specific situation-awareness requirements, that is,
what situations to detect and what actions to take to
respond to those situations. To specify an application-
specific situation-aware interface in a file, we need to
develop an SA-IDL. In this section, we will first
present how we define situation and represent it
formally, and then discuss how we specify an
application-specific situation-aware interface and
incorporate situation-awareness in application
software. We will present how we generate the SA-
ADC, its architecture and runtime detection of
application-specific situation.

3.1 Situation Definition and Expression

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

Since situations use contexts, we introduce our
definition of context first.

Context: We define context as any detectable and
relevant attribute of a device, its interaction with
other devices and/or its surrounding environment at
an instant of time [10].

Situation: We define situation as an expression on
previous device-action record over a period of time
and/or the variation of a set of contexts relevant to
the application software on the device over a period
of time. Situation is used to trigger further device
actions.

We will use an example to illustrate our approach
step by step. This example is taken from our ongoing
work on Smart Classroom, which is a ubicomp test
bed to evaluate our approach in a real setting and to
facilitate collaborative learning among college
students. The following are two common features of
a Smart Classroom:
 An instructor and his students use their own

PDAs to collaborate by dynamically forming short-
range mobile ad hoc networks in a classroom.
 Students’ PDAs dynamically form mobile ad hoc

networks based on proximity and specific contexts,
such as location, light intensity, to collaboratively
solve a specific problem.

Consider the following scenario of a Smart
Classroom: Students in the class form small groups
using their PDAs in the Smart Classroom to solve a
specific problem. During group discussion, the
instructor moves from one group to another to check
the progress of each group. When the instructor walks
towards a group (say, group K) and the walking has
continued for 5 seconds, his PDA detects that he is
interested in group K’s discussion. This causes
instructor’s PDA to download the discussion material
of group K.

In this scenario, the situation is “the instructor is
moving to group K for 5 seconds (contexts variation)
and his PDA has not downloaded the discussion
material of group K (device-action record)”.

It follows from our definition of situation that:
 Situation involves both contexts and actions.
 Some contexts may not be directly used for

situation since some value used in situation
cannot be directly collected through sensors or
device, such as whether the instructor is moving
to a specific location.

 Situation is only meaningful in a time range
related to current time.

A situation expression system contains the following
components:

 Context Tuple: We represent context as a tuple

<t, c1, c2, …, cn> [11], where t is the time stamp and
c1, c2, …, cn are values of the context attributes
relevant to the application software and collected
through sensors, device and application software
directly, such as light intensity, noise level, system
time, application invocation rates, etc.

For the above example, we need to know the location
of the instructor’s PDA to analyze if the instructor is
moving to group K. Hence, we define the context
tuple as <t, loc_x, loc_y>, where (loc_x, loc_y) is a
pair of coordinate values of the PDA location.

 Action Tuple: An action tuple has the same

format of a context tuple and represents a device-
action <t, a1, a2, …, an>, where t is the time when the
action is taken and a1, a2, …, an are a set of attributes
of the action, such as the action name, action
parameters, etc.

For the above example, we need to check whether the
PDA has downloaded the discussion material, so we
define the action tuple as <t, action_name>.

 Derived Context: Context tuples and action

tuples are discrete samples of raw context and action
data. In other words, they are the direct records of the
environment and device information. In addition, we
define derived context as a mathematical function of
contexts that discovers how contexts vary with time.
Note that the function could be recursive, which
means a new derived context can be defined on
existing derived contexts.

To check the situation described in the above
example, we need to compute the distance between
the instructor and the group K (assume the location of
the group is constant (xgk, ygk)), which is noted as
distance_i-gk, and how the distance changes, which
is noted as distance_i-gk_change. Hence, we have
two derived contexts:
 distance_i-gk=((loc_x – xgk)^2 + (loc_y- ygk)^2)^0.5
 distance_i-gk _change = ∆ distance_i-gk

 Situation Expression: A situation expression

within a time range related to current time indicates
how the contexts (may include both direct and
derived contexts) and action vary. It has the
following format:
[∀,∃] t in <time range> ([context, action]
<compare><value>)+ (1)
Existing situations can form new situations by
performing “not”, “and” or “or” operations on them.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

For the above example, the situation expression is:
∀ t in <5 seconds prior to current time, current
time> (distance_i-gk _change <0, action_name <>
“download”),
where i denotes the instructor’s location and gk the
location of group K.

3.2 Situation-Aware Object Interface
Specification

We have developed a situation-aware interface
definition language (SA-IDL). For the sake of
brevity, we only list the following important SA-
IDL grammar rules for our discussion:

1) <context_tuple> ::= ‘ContextTuple’ <ID> ‘{’

‘time’ ‘,’ <variables> ‘}’
2) <action_tuple> ::= ‘ActionTuple’ <ID> ‘{’

‘time’ ‘,’ <variables> ‘}’
3) <derived> ::= ‘Derived’ <ID> ‘{’ <add_expr>

‘}’
4) <derived> ::= ‘Derived’ <ID> ‘{’ <function>

<ID> [<time-interval>] ‘}’
5) <situation> ::= ‘Situation’ <ID>‘{’ <quantifier>

‘(’<time_range> ‘)’ <comparisons > ‘}’
6) <situation> ::= ‘Situation’ <ID> ‘{’ ‘not’ <ID

>’}’ | ‘Situation’ <ID> ‘{’ <ID>‘and’ <ID>
‘}’ | ‘Situation’ <ID> ‘{’ <ID> ‘or’ <ID> ‘}’

7) <activate_tag> ::= ‘[’ ‘activate at’ ‘Situation’
<ID > ‘]’

The following process is to specify the situation-
aware interface in an SA-IDL file:
a. Find all the contexts and action attributes that

will be used in the situations and put them in a
context tuple and an action tuple respectively
using Rules 1) and 2).

b. If the situation cannot use some context or
action values directly, define a derived context
for this purpose using Rules 3) or 4). In 3),
<add_expr> is a mathematical expression of
context or action values. In 4) the <function> is
a pre-defined function of those values such as
“delta”, “sum”, etc.

c. Use Rule 5) to express the situations related to a
single time range. If needed, use Rule 6) to
express more complicated situations by
applying “and”, “or” or “not” operations on
defined ones.

d. Use Rule 7) to associate the situations and
corresponding actions.

Figure 2 shows the situation-aware object interface
specification in an SA-IDL file for the example in
Section 3.1.

3.3 Application-Specific SA-ADC

When the SA-IDL file is compiled using the SA-
IDL compiler, an SA-ADC is automatically
generated. To recognize the situations defined in the
SA-IDL file and activate the associate actions, an
SA-ADC is composed of three modules: Base Class,
Situation Analyzer and Dispatcher. The architecture
is depicted in Figure 3.

Base class is the skeleton of the interface specified
by the SA-IDL file. It contains method specification
and some user-defined types, but no information of

interface collaborator {
ContextTuple context_device1 {
 t,
 loc_x: integer;
 loc_y: integer; }

ActionTuple action_device1 {
 t,
 action_name: string; }

Derived distance_i-gk {
 ((loc_x – xgk)^2 + (loc_y- ygk)^2)^0.5 }

Derived distance_i-gk _change {
 Delta distance_i-gk }

Situation distance_i-gk _decreasing {
 ForAny (t > T-5)

distance_i-gk_change<0
action_name<> “download1”
}

[incoming] [activate at

distance_i-gk_decreasing]
void download1 (string discussion)

}

Figure 2: The Situation-Aware Object Interface
specification in an SA-IDL file for the

instructor’s PDA

Situation-Aware Object

Base Class (generated by SA-IDL)

Situation Detector

Context
Processor

R-ORB

Context
Reflector

Action
Reflector

Win CE

Situation Analyzer

SA-ADC

dispatcher

Figure 3: SA-ADC Architecture.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

the situations defined in the SA-IDL file. The
developer is responsible to generate the code of the
situation-aware object that extends this base class.
Situation Analyzer is a module that analyzes
contexts and actions and recognizes situations. It
contains three components: Context Reflector, Action
Reflector and Situation Detector. The reflectors get
raw context and action data from the hardware
context processor and operating system, and then
form context tuples and action tuples as specified in
the SA-IDL file and output the tuples to situation
detector. The situation detector analyzes the data and
recognizes the situations specified in the SA-IDL file.
Once some situation is matched, situation detector
will notify the R-ORB of the matched situation. This
notification is called a situation match event. Then
the R-ORB will start to check if a communication
partner is available to trigger the associate action. If
there is one, R-ORB will request the dispatcher to
invoke that action.

Dispatcher is the module that invokes the actions
that associated with situations. When it receives the
activation request from the R-ORB, it defers the
request to the base class. After the action is
performed, the dispatcher sends the return values of
the action to R-ORB.

For the SA-IDL file presented in Figure 2, the
compilation generates an SA-ADC that is specific to
it. The context reflector maintains a table of context
tuples (time, loc_x, loc_y). The action reflector holds
a table of action tuples (time, action_name). The
situation analyzer computes and records the derived
contexts (distance_i-gk, distance_i-gk_change) and
measures the situation (distance_i-gk_decreasing).

4. Deployment and Runtime Services in RCSM+
to Support Situation-Aware Objects

In this section, we will discuss the deployment and
runtime services in RCSM+ that enable situation-
aware application objects to communicate with
objects-of-other-devices-in-an-ad-hoc-network.

Registration of Situation-Aware Objects: The
registration process is performed to deploy the
application objects on top of our RCSM+ ORB (R-
ORB). In addition to performing situation analysis on
behalf of a situation-aware object, an SA-ADC acts
as an adapter between the object and R-ORB to
facilitate bi-directional communication. During the
registration process every SA-ADC performs an
initialization to bind it to a well-known interface of
the R-ORB. The registration data includes situation-
aware interface information of the application object,
the sensor data required by the SA-ADC, and an
upcall interface descriptor of the SA-ADC.

Sensor-Data Propagation to Situation-Aware
Objects: During application software execution, an
SA-ADC needs to have timely access to the latest
sensor data to perform object-specific situation
analysis. The context-processor component of R-
ORB performs periodic data acquisition from the
sensors connected to the device. Using the data
collected during registration process, R-ORB
categorizes and propagates the sensor data to
appropriate SA-ADCs using the corresponding upcall
interfaces. This process uniformly isolates the SA-
ADCs from the low-level data acquisition routines
connected to the sensors. In our Smart Classroom test
bed, four different types of sensor data are collected:
noise, light, motion, and location.

Situation-Aware Communication Channel
Establishment: A situation-aware communication
channel (SCC) between two devices is a type of
channel that is established and terminated based on
application-specific situation specification. During
application software execution, R-ORB performs
proactive device discovery and uses a protocol to
establish and maintain an SCC with a remote device.
The protocol establishes a new channel based on the
following conditions:

 Reachability: There exist two devices A and B

such that they are in the transmission range of each
other.
 Existence of Situation-Aware Objects: Each

device (i.e. A and B) has at least one situation-aware
object.
 Recent Occurrence of Situation-Match

Events: There exists at least one SA-ADC
component in both A and B that has recently
generated a situation-match event. This implies that
the application object associated with such an SA-
ADC has at least one method that can be invoked
currently based on its situation-specification. Let
these objects be Oa and Ob and their methods be Ma
and Mb for Devices A and B respectively.
 Compatibility: Ma and Mb are suitable to

exchange data with each other in the sense of
matching of interface signatures, including the
number and types of parameters, or other
application-specific criteria, such as compatibility of
radio-frequency identifiers, security attributes, etc.

The protocol is symmetric and uses peer-to-peer
interaction semantics. Any device in a network can
independently check the validity of the conditions
and establish a communication channel. This
strategy promotes spontaneous and ad hoc
networking among the devices. Now we would like
to explain how situation-aware communication
channels are established in our Smart Classroom
scenario presented in Section 3:

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

i) During runtime when appropriate situations are
valid, the SA-ADCs in both PDAs generate situation-
match events and notify the respective R-ORB.

ii) Each R-ORB then uses the information from Step
i) to initiate the service discovery procedure. If other
PDAs are in the transmission range, instructor’s PDA
initiates service discovery to discover students’
PDAs, and vice versa.

iii) If the discovery is successful, the respective R-
ORBs generate service-match events. The service-
match event is used to trigger the initiation of a new
situation-aware communication channel between R-
ORBs of both of PDAs.

iv) After the communication channel is established,
each R-ORB requests the respective dispatcher of the
instructor and student-group application software to
activate the corresponding objects. Following the
invocation of student-group object, the data is passed
through the dispatcher object.

6. Discussion and Future Work

In this paper, we have presented an approach to
situation-aware application software development for
ubicomp environments. Specifically, we have
presented how our SA-IDL is used to define
situation-aware object interfaces and to generate
application-specific SA-ADCs. We have also
discussed how the object request broker of RCSM+
(R-ORB) facilitates situation-aware communications
among devices. We are currently incorporating our
results into our smart classroom test bed to evaluate
RCSM+. The SA-IDL compiler and SA-ADC
components are being developed in C++ for
Windows CE-based PDAs. R-ORB is being co-
designed in software and Xilinx Spartan II
reconfigurable hardware. For more detailed
information, refer to our project web site:
http://www.eas.asu.edu/~rcsm.

Future research in this area includes using the
situation-awareness capability in RCSM+ to develop
group communication and information dissemination
services for ubicomp environments. Effective testing
of situation-aware application software developed
using our approach is also needed. In addition, we
will extend SA-ADCs to provide priority-based
object activation for situation-aware real-time
software.

Acknowledgement

This research is supported by National Science
Foundation (NSF) under grant number ANI-0123980.

References

[1] M. Weiser, “Some Computer Science Problems in
Ubiquitous Computing”, Communications of the
ACM, Vol. 36, No. 7, July 1993, pp. 75-84.
[2] G. Abowd and E. D. Mynatt, “Charting Past,
Present, and Future Research in Ubiquitous
Computing”, ACM Trans. Computer Human
Interaction, Vol. 7, No.1, pp. 29-58, March 2000.
[3] The Oxygen Project,
http://www.oxygen.lcs.mit.edu/.
[4] G. Abowd, et al, “Cyberguide: A Mobile Context-
Aware Tour Guide”, Wireless Networks, Vol. 3. No.
20, pp. 421-433, 1997.
[5] P Marti, F. Gabrielli, L. Petroni, and F. Pucci,
“Situated Interactions in Art Settings”, Proc.
Workshop on Situated Interaction in Ubiquitous
Computing at CHI2000, April 2000,
http://www.teco.edu/chi2000ws/papers/29_marti.pdf
[6] B. Schiele, T. Starner, B. Rhodes, B. Clarkson
and A. Pentland, "Situation Aware Computing with
Wearable Computers." Augmented Reality and
Wearable Computers, W. Barfield and T. Caudell
(ed.), Lawrence Erlbaum Press. 1999.
[7] T. Selker and W. Burleson, “Context-Aware
Design and Interaction in Computer Systems”, IBM
System Jour., vol. 39, no. 3-4, 2000,
http://cac.media.mit.edu:8080/contextweb/jsp/index.h
tm.
[8] A. K. Dey and G. Abowd, “The Context-Toolkit:
Aiding the Development of Context-Aware
Applications”, Workshop on Software Engineering
for Wearable and Pervasive Computing, Ireland,
2000, http://www.cc.gatech.edu/fce/contexttoolkit/.
[9] S. S. Yau and F. Karim, “Context-Sensitive
Software Development for Ubiquitous Computing
Environments”, Proc. 25th Int’l Computer Software
and Applications Conference (COMPSAC 2001),
USA, October 2001, pp. 263-268.
[10] S. S. Yau and F. Karim, “Reconfigurable
Context-Sensitive Middleware for ADS Applications
in Mobile Ad Hoc Network Environments”, Proc. 5th
IEEE Int’l Symp. Autonomous Decentralized Systems
(ISADS 2001), March 2001, USA, pp. 319-326.
[11] S. S. Yau and F. Karim, “Context-Sensitive
Middleware for Real-Time Software in Ubiquitous
Computing Environments”, Proc. 4th IEEE Int’l
Symp. Object-Oriented Real-Time Distributed
Computing (ISORC 2001), May 2001, Germany, pp.
163-170.

Proceedings of the 26 th Annual International Computer Software and Applications Conference (COMPSAC’02)
0730-3157/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

