
Development and Runtime Support for Situation-Aware Application Software in

Ubiquitous Computing Environments

Stephen S. Yau, Dazhi Huang, Haishan Gong, Siddharth Seth

Department of Computer Science and Engineering

Arizona State University

Tempe, AZ 85287-8809, USA

{yau, dazhi.huang, haishan.gong, sidseth}@asu.edu

Abstract
Due to the dynamic and ephemeral nature of ubiquitous

computing (ubicomp) environments, it is necessary that
application software in ubicomp environments is situation-

aware (SA) and should be adaptable to both users’

situation changes and the requirement changes.
Reconfigurable Context-Sensitive Middleware (RCSM)

has been developed to provide development and runtime

support for SA software in ubicomp environments, but do
not provide runtime support for on-demand context

acquisition, action scheduling and dynamic

reconfiguration of SA software, and development support
that maximize the reusability. In this paper, the

development and runtime support provided by RCSM have
been substantially expanded to greatly simplify the

development of situation-aware application software, and

to achieve reusability and runtime reconfigurability
simultaneously.

Keywords: Situation-aware application software,

ubiquitous computing, Situation-Aware Interface

Definition Language (SA-IDL), RCSM, development

support, runtime support.

1. Introduction

Ubiquitous computing (ubicomp) environments provide

access to information and computing resources for users at

any time and anywhere. An application software running

on the mobile and wearable devices in ubicomp

environments often needs to be situation-aware (SA) in

order to relieve users from adjusting the devices

operations due the dynamic changes of the situations of

devices. We consider a situation as a set of past contexts

and/or actions of individual devices relevant to future

device actions, and a context is any instantaneous,

detectable, and relevant condition of the environment or

the device [1]. In general, SA application software in

ubicomp environments operates with the following three

phases:

• Context acquisition from ambient environments.

• Situation analysis to determine the situations.

• Proper action triggering based on the current situation.

When multiple actions are triggered simultaneously,

scheduling of triggered-actions is needed to generate the

proper triggering sequence of these actions to ensure the

correctness of the SA application software and satisfy

the real-time requirements of these actions.

From these three phases, SA application software needs

to have the capabilities of context acquisition, situation

analysis, wireless ad hoc communications and action

scheduling. Developing SA application software with

these capabilities is challenging due to the severe resource

constraints of ubicomp devices and the ephemeral and

heterogeneous ubicomp environments. Hence,

development and runtime support is needed to simplify the

development and improve the performance of SA

application software with these capabilities. Moreover, it

is desirable that the development support can maximize

the reusability of SA application software, and the runtime

support can facilitate the runtime reconfiguration of SA

application software to adapt to the changing ubicomp

environments.

Reconfigurable Context-Sensitive Middleware (RCSM)

[1-3], which was developed, cannot provide development

support for maximizing the reusability and runtime

support for on-demand context acquisition, action

scheduling and runtime reconfiguration of SA application

software. In this paper, we will present greatly expanded

development and runtime support in RCSM. Our

expanded development support includes situation-

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

awareness requirement specification with more reusable

context representation and new notations for action

scheduling requirements, and code generation. Our

expanded runtime support will include on-demand context

acquisition, action scheduling, SA requirement

management for reusability, and runtime reconfiguration

of context acquisition and situation analysis. They will

greatly simplify the development of situation-aware

application software while achieving reusability and

runtime reconfigurability simultaneously.

2. Desirable Development and Runtime Support

Based on the discussion in Sec. 1, the following

development and runtime supports for SA application

software in ubicomp environments are desirable:

D1) Context Acquisition Transparency: Runtime

support should provide well-defined interfaces for

application developers to retrieve contexts from various

sources without knowing how contexts are collected.

D2) On-demand Context Acquisition: Development

support should allow application developers to specify

their requirements on contexts. Runtime support should

provide the capabilities to discover and collect contexts

based on the needs of SA application software.

D3) Situation Analysis Transparency: Runtime

support should provide the capability to analyze collected

context data to determine the situation, and notify SA

application software when the situation changes.

Development support should allow application developers

to specify the situations of their interests.

D4) Reusability: Runtime support should provide the

capability to share the situation and context specifications

among SA application software to improve reusability.

D5) Communication Transparency: Runtime support

should provide transparent communication support for SA

application software to communicate with other SA

application software over infrastructure or ad hoc wireless

and wired networks.

D6) Scheduling: Development support should allow

application developers to specify scheduling requirements

on situation-triggered actions. Runtime support should

provide the capability to schedule situation-triggered

actions based on their scheduling requirements.

D7) Reconfigurability: Runtime support should allow

users or application developers to change the situation-

awareness requirements of SA application software.

D8) Efficiency: Runtime support should conserve

resources, such as energy, memory, CPU time and

network communication bandwidth.

3. Current State of the Art

In the last several years, substantial research [4-10] has

been done in context-aware computing. Several

frameworks, toolkits and infrastructures have been

developed for providing support to context-aware

application development. Notable results include

ParcTabs, Stick-e Notes, CALAIS, CoolTown, Context

Toolkit, Context Fabric and MobiPADS.

ParcTabs [4] and CALAIS [5] support acquisition of

contexts (D1) about users and devices. Context Toolkit [6]

aims at providing architectural support for context-aware

applications (D1 and D4). CoolTown [7] aims at

supporting applications that display contexts and services

to end-users (D1). Context Fabric [8] aims at making

context-aware applications easy to evolve and maintain by

providing a service-based infrastructure (D1 and D7), and

uses a context specification language (CSL) for declaring

and processing context needs [9] (D2), i.e., writing context

queries from the device’s local context service. Stick-e

Nodes [10] also provides mechanisms for indicating what

contexts are needed and specifying actions to be taken

based on a particular combination of contexts (D1 and

D2). MobiPADS is a reflective middleware that is

designed to support dynamic adaptation of context-aware

services based on which application’s runtime

reconfiguration is achieved (D1, D2, D4 and D7). None of

them can satisfy D3, D5 and D6.

Our previous RCSM [1-3] provides the following

support for SA application software:

1) Development support. A declarative Situation-

Aware Interface Definition Language has been developed

in RCSM to specify SA requirements. The SA-IDL

compiler generates an application specific Situation-

Aware Adaptive Object Containers (SA-ADC) based on

the SA-IDL specification of SA application software.

2) Runtime support. RCSM Object Request Broker

(R-ORB) provides efficient and transparent supports for

context acquisition and wireless ad hoc communication.

SA-ADCs can analyze context and action history to

recognize situations, and trigger proper actions based on

situations.

These development and runtime supports by our

previous RCSM provide efficient (D8) and transparent

context acquisition (D1), situation analysis (D3), and

wireless ad hoc communications (D5) to SA application

software. However, they could not satisfy requirements

D2, D4, D6 and D7.

4. Expanded Development and Runtime

Support in RCSM

To overcome the limitations of our previous RCSM, we

have greatly expanded the development and runtime

support in RCSM with all the desirable features discussed

in Sec. 2.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

4.1 Expanded Development Support

Our expanded development support includes an

improved SA-IDL and its compiler for SA requirement

specification and automated code generation.

To develop SA application software, application

developers need to first identify the SA requirements,

which include what contexts need to be collected, what are

the situations of interest, what actions should be triggered

in certain situations and how the triggered actions should

be scheduled. Then, application developers can use SA-

IDL to specify the SA requirements and use the SA-IDL

compiler to generate the application skeleton for the SA

application software.

SA requirement specification using the improved

SA-IDL.

SA requirement specification includes context

representation, situation representation and situation rule

representation. The improved SA-IDL has the following

two major features:

(1) Using object-oriented context representation (D4),

which is a concise and reusable way to represent contexts,

and can facilitate application evolvement and

reconfiguration.

In ubicomp environments, sources of context are

heterogeneous, i.e., a context acquired from different

sources may be in different formats. For example, location

information could be described in latitude-longitude

format when acquired from GPS, or in street_number-city-

zip_code format when acquired from a location server.

As mentioned in Sec. 2, the context representation in

our previous SA-IDL is not concise and reusable.

Furthermore, the context representation in previous SA-

IDL cannot show the relationship among different

contexts, which makes context discovery difficult. We

have adopted object-oriented modeling technique to

represent contexts in the improved SA-IDL. Figure 1

shows a set of context classes with inheritance

relationships. Using object-oriented modeling technique

will result in better design due to added flexibility,

extensibility and ability to evolve, in both incorporating

modifications in existing contexts and adding new

contexts.

(2) Incorporating action scheduling requirement

specification in situation rule representation (D6).

Situation rule representation indicates the situation and

actions mapping relationship. When a situation is

recognized, one or more actions may be triggered. The

improved SA-IDL provides necessary abstractions for

application developers to specify action-scheduling

requirements. The scheduling requirement of an action has

two properties: “within” indicates the deadline that the

action must be triggered. The number associated with the

“priority” of the action represents the action’s priority, the

higher value the higher priority. The new runtime support

for action scheduling, which will be explained later, is

base on these two features of SA-IDL.

Figure 2 shows an example for SA-IDL specification of

an SA application.

Automated code generation using the compiler for

the improved SA-IDL.

In order to greatly improve the reusability and

reconfigurability of SA application software and reduce

/* Specify context class hierarchy*/

RCSMContext class Base {

 // define attributes here, if any

}

RCSMContext class Location extends Base {

 string location_name;

}

RCSMContext class GPS_Location extends Location {

 double latitude;

 double longitude;

}

RCSMContext class Mailing_Location extends Location {

 string street;

 string city;

 string zipcode;

}

Figure 1. Representing location contexts using our
improved SA-IDL.

RCSMContext Class Time extends Base

 { int weekday; int currentTime; }

RCSMContext Class Location extends Base

 { string room; }

RCSM Context Class ClassSchedule extends Base

 { string className; int weekday; int start_time;}

… …

RCSM Context Acquisition { Time {frequency = 4;}}

RCSMSARule BeforeLecture {

 PrimitiveSituation approachingClassTime

([-1,0] ClassSchedule.start_time - Time.currentTime < 3600);

 PrimitiveSituation inOffice

([-1,0] Location.room == MyInfo.myOffice);

 PrimitiveSituation myDesktopIsAround

([-1,0] NeighborDevice.ID = = MyInfo.myPC);

… …

CompositeSituation preparation

(approachingClassTime && inOffice && myDesktopIsAround

&& … …);

 ActivateAt preparation {

[incoming] void download_slides(string) [within 3][priority 1]

 }

}

Figure 2. An SA application specification using our
improved SA-IDL

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

unnecessary memory and communication overhead, we

have developed a new architecture of SA application

software, which completely decouples application

functional components and the situation-processing

components. Figure 3 depicts this architecture. Decoupling

application functional components and the situation-

processing components will greatly enhance code

reusability since different SA application software can

share the same situation-processing components. Such

decoupling will also greatly enhance the reconfigurability

of SA application software because any changes on an

application’s functional components will not affect its

situation-processing components, and vice versa.

Application skeletons in Figure 3 are generated the

improved SA-IDL compiler by compiling the SA-IDL

specifications. They simplify the development of SA

application software by providing extensible object

skeletons for application developers to implement the

applications’ functionalities. An Application Skeleton

consists of a base class, R-ORB Comm., SA Comm., and a

SA file:

• The base class defines the interface of an SA application

object, how an action (method) of the SA application

object is triggered by SA Processor when certain

situation is recognized, and when the SA application

object needs to communicate with a remote object using

R-ORB. Once application skeletons are generated,

application developers only need to extend the base

classes to implement the functionalities for SA

application objects.

• The R-ORB Comm. and SA Comm. provide standard

interfaces with R-ORB and SA Processor to support the

interactions between the SA application object and SA

Processor or R-ORB, and mask the complexity of these

interactions from application developers.

• The SA file is a formatted XML file that contains the

SA requirements of the SA application object. SA file is

used by SA Processor in runtime.

4.2 Expanded Runtime

Support
Our expanded runtime

support includes support for

runtime reconfigurable and on-

demand context acquisition (D2

and D7), situation analysis

based on runtime

reconfigurable SA requirements

(D7), SA requirement

management for reusability

(D4) and action scheduling

(D6). The expanded runtime

support is provided by SA

Processor and R-ORB in the

expanded RCSM.

Using SA Processor and R-ORB to facilitate the

execution and reconfiguration of SA application

software. In runtime, SA Processor and R-ORB are

running as service processes. R-ORB provides interfaces

for context discovery, collection and propagation. SA

Processor manages SA requirement specifications,

maintains the context and action history, recognizes

situations based on the context and action history, and

schedules actions to be triggered. Specifically, R-ORB and

SA Processor facilitate the execution of SA application

software as follows:

1) When the SA application starts running, it sends a

registration message to SA Processor. The registration

message contains the application object’s name,

communication port of its SA Comm., and the location

of the application’s SA file.

2) Once SA Processor receives a registration message, it

will read the new SA requirement specifications from

the application’s SA file, and use its SA requirement

management capability to check for new contexts,

situations and situation rules.

3) If some contexts and situations are being used by

other SA applications currently running on the same

device, SA Processor will reuse (D4) these contexts

and situations for the new SA application.

4) If new situations and situation rules are found, SA

Processor will add these new situations and situation

rules into its SA Spec Storage, and analyze context

and action history for recognizing the new situations.

5) If new contexts requirements are found, SA Processor

will send them to R-ORB. R-ORB will reconfigure

(D7) its context acquisition capability based on the

new requirements (D2) from SA Processor, and send

the updates of required contexts to SA Processor.

6) When SA Processor receives updated contexts from

R-ORB, it will update and analyze the context and

action history.

App

Object

SA Processor

Context

Comm.
SA

Manager

Action

Scheduler

Situation

Analyzer

SA Spec

Storage

SA FileSA File
Context &

Action

Storage

R-ORB

App Comm.
Context

Manager

Network

Comm.

R-ORB

Core

R-ORB Comm.:

 Communication interfaces

 with R-ORB

SA Comm.:

 Communication interfaces

 with SA Manager

Context Comm.:

 Communication interfaces

 with Context Manager

App Comm.:

 Communication interfaces

 with SA application software

Network Comm.:

 Network communication

 interfaces

Application Skeletons

SA Comm.

Base

Class

R-ORB

Comm.

N
e

tw
o

rk
 &

O
S

S
e

n
s

o
rs

 &

F
P

G
A

Figure 3. Our new architecture of SA application software.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

7) If a situation is recognized, SA Processor will trigger

the proper actions based on the corresponding

situation rules. If multiple actions can be triggered

simultaneously, SA Processor will schedule these

actions based on their scheduling requirements in the

situation rules.

The reconfiguration of SA application software is

supported by SA Processor. The SA requirement

management capability provided by SA Processor allows

application developers or users to query and update SA

requirements in runtime. Once SA Processor receives an

updated SA requirement, it will start a similar process as

2) – 7) above to handle the updated requirement.

Situation analysis, action scheduling and SA

requirement management using SA Processor. Our

previous runtime support for situation analysis is provided

by application specific SA-ADCs [1, 2]. Based on the

discussion in Sec. 2, our previous SA-ADCs cannot satisfy

D4, D6 and D7, and cause unnecessary memory and

communication overhead. To overcome these limitations,

we have redeveloped the application-independent SA

Processor to address reliability (D4), scheduling (D6),

reconfigurability (D7), as well as provide runtime situation

analysis support for multiple SA application software

simultaneously. SA Processor consists of the following

components:

• SA Spec Storage stores all the SA requirement

specifications of SA application software running on the

device. It allows SA specifications to be shared and

reused (D4) in different SA application software

running on the device.

• Context and Action Storage stores the collected context

data and action history of SA application software

running on the device.

• Context Comm. notifies Context Manager in R-ORB of

contexts requested by SA application software, retrieves

updated context data from R-ORB and updates Context

and Action Storage.

• SA Manager provides support for SA requirement

management. It accepts registrations from SA

application software, reads the applications’ SA Files,

updates SA Spec Storage by adding new SA requirement

specifications from the applications’ SA File, sends

context requirements to Context Comm., and notifies SA

application software of the situation and the actions to

be taken. SA Manager also provides query/update

interfaces to support changing SA requirement

specifications in runtime (D7).

• Situation Analyzer provides support for reconfigurable

(D7) situation analysis. It checks Context and Action

Storage periodically for updated context and action

history, recognize the situation based on SA

requirement specifications in SA Spec Storage, and

sends the recognized situation to Action Scheduler. In

our previous SA-ADCs, the logic for recognizing

situations is hard-coded and generated by our previous

SA-IDL compiler, and hence the situation analysis

capability provided by SA-ADCs cannot be

reconfigured in runtime. To address the

reconfigurability, the Situation Analyzer in our new SA

Processor adopts another approach: it reads the SA

requirement specifications in SA Spec Storage in

runtime, and uses a first-order logic rule processing

engine to recognize situations. Therefore, when an SA

requirement specification changes or new SA

requirement specifications are added into SA Spec

Storage, Situation Analyzer will automatically use the

new requirements for future situation analysis.

• Action Scheduler provides support for action

scheduling (D6). Upon receiving a recognized situation

from Situation Analyzer, Action Scheduler lookups SA

Spec Storage to identify actions to be triggered under

the recognized situation and these actions’ scheduling

requirements, schedules these actions based on their

priorities and deadlines, and sends the results to SA

Manager. The results will include the recognized

situation, actions to be triggered and the schedule of

triggered actions. Similar to Situation Analyzer, the

action scheduling can be reconfigured (D7) in runtime

by changing the actions’ scheduling requirements in SA

rules.

Context acquisition using R-ORB. Our previous R-

ORB consists of Context Manager, R-ORB Core, App

Comm. and Network Comm. Context Manager collects

context data from various sensing units, including local or

remote sensors for monitoring environments, and software

routines for monitoring system status and user contexts. R-

ORB Core, App Comm. and Network Comm. provide

wireless ad hoc communication support for SA application

software. Based on the discussion in Sec. 2, we can see

that the previous R-ORB cannot satisfy D2 and D7.

To satisfy D2 and D7, an adaptive, lightweight and

energy-efficient context discovery protocol, R-CDP [11],

has been developed and used in our new Context Manager,
which manages the registrations of local sensing units,

discovers remote sensing units, retrieves context data

based on requirements from Context Comm. in SA

Processor, and sends collected data to Context Comm. as

follows:

1) When a new local sensing unit starts running, it will

register in Context Manager by sending the

information on its sensing capability, including the

contexts it has collected, the methods of acquiring

contexts, and the range of supported frequency of

context acquisition. But, a sensing unit will not be

activated until a SA application requests the contexts

provided by the sensing unit.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

2) When a SA application starts running, its

requirements on contexts will be extracted and sent to

Context Manager by SA Processor.

3) Context Manager will check whether any local

sensing units can provide the required contexts, and

initiate the context discovery process to find remote

sensing units that can provide the required contexts, if

necessary.

4) If all required contexts are found, Context Manager

will send a “registration success” message and

updates of the required contexts to Context Comm. in

SA Processor. Otherwise, it will send Context Comm.

a “registration fail” message to terminate the

execution of the SA application software.

A set of sensing units, which were developed for our

previous R-ORB, have been modified to support the above

context discovery process, and used as default sensing

units for our expanded R-ORB. The set of sensing units

includes hardware/software sensors for collecting

environmental contexts (time, location, light, noise and

motion), and software routines for collecting system and

network status (memory, battery power, network

bandwidth, etc.). Sensing units for collecting user contexts

are usually domain- or application- specific, and hence

they need to be provided by domain experts or application

developers.

4.3 Implementation of the Expanded Development

and Runtime Support of RCSM
We have implemented the improved SA-IDL compiler

in C, which can generate application skeletons

implemented in eMbedded VC++ executed on Windows

CE platforms. The SA Processor and R-ORB in the

expanded RCSM are also implemented in eMbedded

VC++. Currently, we are developing demonstration

applications using our expanded development and runtime

support, and evaluating the performance of SA Processor

and R-ORB in the expanded RCSM.

5. Conclusions and Future Work

In this paper, we have presented our expanded

development and runtime support provided by our new

RCSM for situation-aware application software in

ubicomp environments. We have identified a set of

desirable development and runtime support, and discussed

how our new RCSM provides such desirable support,

which includes situation-awareness requirement

specification with more reusable context representation,

new notations for context acquisition rate and action

scheduling requirements, code generation, runtime

reconfigurable and on-demand context acquisition,

situation analysis based on runtime reconfigurable SA

requirements, SA requirement management for reusability

and action scheduling. The above support can greatly

simplify the development and facilitate the execution and

reconfiguration of SA application software. Future work

includes improving the expressive power of SA-IDL,

developing a model-based approach for verification of

SA-IDL specification, fuzzy situation rule processing, and

development and runtime support for security and privacy.

Acknowledgment

This work was supported in part by National Science

Foundation under grant number ANI 0123980.

References
[1] S. S. Yau, Y. Wang and F. Karim, “Development of

Situation-Aware Application Software for Ubiquitous

Computing Environments”, Proc. 26th IEEE Int'l Computer

Software and Applications Conf. (COMPSAC 2002), August,

2002, pp. 233-238.

[2] S. S. Yau, F. Karim, Y. Wang, B. Wang and S. Gupta,

“Reconfigurable Context-Sensitive Middleware for Pervasive

Computing,” IEEE Pervasive Computing, 1(3), July-September

2002, pp.33-40.

[3] S. S. Yau and F. Karim, “An Energy-efficient Object

Discovery Protocol for Context-Sensitive Middleware for

Ubiquitous Computing”, IEEE Trans. on Parallel and

Distributed Systems, vol. 14(11), November, 2003, pp. 1074-

1084.

[4] B. Schilit, “System architecture for context mobile

computing,” Unpublished doctoral dissertation, Columbia

University, 1995.

[5] B. J. Nelson, “Context-Aware and Location Systems”, PhD

thesis, University of Cambridge, Jan. 1998

http://www.sigmobile.org/phd/1998/theses/nelson.pdf

[6] A. K. Dey and G. D. Abowd “A Conceptual Framework and

a Toolkit for Supporting the Rapid Prototyping of Context-

Aware Applications,” Human-Computer Interaction, vol. 16(2-

4), 2001, pp. 97-166.

[7] D. Caswell and P. Debaty, “Creating Web representations for

places,” Proc. 2nd Int’l Symp. on Handheld and Ubiquitous

Computing (HUC2K), 2000, pp. 114-126.

[8] J. Hong and J.A. Landay “An Infrastructure Approach to

Context-Aware Computing,” Human-Computer Interaction, vol.

16(2-4), 2001, pp. 287-303.

[9] J. Hong, “The Context Fabric: An Infrastructure for Context-

Aware Computing,” Proc. ACM CHI '02 extended abstracts on

Human Factors in Computing Systems, vol. 2, 2002, pp.554-555.

[10] P. J. Brown, “The stick-e Document: a framework for

creating context-aware applications” Proc. Electronic Publishing

1996, pp.259-272.

[11] S. S. Yau, D. Chandrasekar and D. Huang, “An adaptive,

Lightweight and Energy-Efficient Context Discovery Protocol

for Ubiquitous Computing Environments,” Proc. 10th Int’l

Workshop on Future Trends of Distributed Computing Systems

(FTDCS’04), May 26-28, 2004, pp. 261-267.

[12] S. S. Yau, S. Gupta, F. Karim, S. Ahamed, Y. Wang and B.

Wang, “A Smart Classroom for Enhancing Collaborative

Learning Using Pervasive Computing Technology”, Proc. 6th

WFEO World Congress on Eng. Education & 2nd ASEE Int’l

Colloquium on Eng. Education (ASEE2003), June 2003.

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

	footer1:

