
Integration of Object-Oriented Software Components for
Distributed Application Software Development*

Stephen S . Yau and Fariaz Karim
Computer Science and Engineering Department

Arizona State University
Tempe, AZ 85287, USA

{ yau, karim} @asu.edu

Abstract

The process of component integration for distributed
application sofrware development requires
identifying the candidate components and performing
compatibility checks based on the functional as well
as non-functional requirements of the target
application sofhvare. Since these requirements vary,
it is important that distributed components
themselves provide a set of specific services to
facilitate component integration. In this paper, an
approach to component integration for distributed
application software is given. An object-oriented
distributed component framework and a distributed
connector model are presented to facilitate
component integration.

Keywords: component-based software development,
integration, distributed system, framework, connector

1. Introduction

The component-based software development (CBSD)
approach has shown significant promises in
distributed application software development. Unlike
traditional software development practices, CBSD
focuses on construction of software, rather than
programming. Although programming is still
required at the implementation phase, CBSD removes
the detailed programming task from software
developers to component developers, who are usually
well versed in specific problem areas. Then,
distributed software development often becomes the
tasks of a third party, which identifies a set of pre-
developed components from a repository, possibly
customizes them to fit specific requirements, and
finally integrates them to build the application
software. The CBSD approach thus facilitates better
software reuse and higher productivity in software
development.

Recent improvements in standardizing component
and middleware specifications, such as COM,
CORBA, JavaBeans, TINA-C Service Component,
lead to standardized infrastructures and

*This work is supported under a collaborative research
agreement between Arizona State University and Fujitsu. Ltd.

0-7695-0468-W99 $10.00 0 1999 IEEE 111

communication protocols, which facilitate the
development and integration of object-oriented
distributed software in a heterogeneous environment.
Our previous work [1,2] was focused on transparent
adapter generation for integrating heterogeneous and
distributed software components to construct fault-
tolerant distributed application software. A different
approach was presented in [3], which separates the
interactions among components from components
themselves and integrates them based on a set of pre-
determined connection points. A similar approach
was adopted in [4], which also provides support for
specification of distributed software architecture and
customization of components through wrappers. A
formal model was presented in [5] , where the
compatibility between a component and a connector
is checked based on the nature of interactions each
expects from the other.

Despite these advances, component integration in
general continues to be a difficult task [6] . The
problem becomes harder to solve in case of
distributed software development due to the issues
related to different non-functional requirements (e.g.
types of fault-tolerance, event-handling, resource-
management, etc.) in addition to the functional
requirements of the target application software.
Before the actual integration it becomes necessary to
successfully check the compatibility of a component
with the target distributed software architecture.
Moreover, this aspect of integration becomes more
complicated if the components are used as black
boxes. Clearly, a mechanism is needed to auto-
matically identify the compatibility of components
with the target architecture based on the specified
attributes. In this paper we will present a distributed
component framework and a distributed connector
model to facilitate such an integration mechanism.

2. Out Approach

Our approach to component integration for
distributed application software includes an
integration mechanism that performs compatibility
check of a black box component with the target

mailto:asu.edu

architecture based on both functional and non-
functional requirements. We consider the following
non-functional attributes for compatibility checks:

. Types of protocols used in the architecture . Types of security protocols used . Types of fault tolerance
Types of event handling . Types of exception handling . Amount and types of resources used

Compatibility checks based on fault-tolerance, event,
and exception handling are also useful if the target
architecture has some real-time requirements and
thus the compatibility of the candidate components
need to be checked before being integrated into a
distributed real-time software.

Our approach uses the Distributed Component
Architecture (DCA) [l] as the common underlying
environment to integrate and use distributed software
components. An object-oriented distributed
component framework is used to facilitate
compatibility checks of components with the target
architecture during integration time. Concerning the
communication aspect, an object-oriented model of
distributed connectors is used for connecting
components and providing various communication
Quality of Service (QoS).

The entire integration process can be summarized as
follows:

1) Specify the target architecture of the distributed
application software as a model adopted from
U 0 Automata [7].

2) Select the candidate components from repository
based on desired functionality.

3) Perform non-functional compatibility checks on
the components from 2) that are based on the
component framework by supplying a part of the
automaton from 1).

4) Identify the compatible components based on 2)
and 3).

5) Customize the components from 4) that are not
completely compatible based on the results in 3).

6) Visually integrate the components from 4) and 5)
using distributed connectors to generate the
distributed application software.

In this paper, we limit our discussions to the
distributed component frameworks and distributed
connectors (Sections 4 and 5), and their roles in the
integration mechanism (Section 6). The details of the
I/O Automata-based component and architecture
models and the associated compatibility checks

during integration will be covered in a future paper.
We will use an example to illustrate the use of the
component framework and distributed connector in
developing a component-based distributed network
management application. We will also discuss the
implementation issues.

3. Desirable Properties of a Distributed
Software Component

In addition to implementing the common interfaces
[2] , a distributed software component [l] should
satisfy the following requirements to address the
issues specified in the previous section:

Appropriate interface and corresponding
implementation for checking compatibility
during integration.
Suitable support for performing customization -
both during integration and maintenance time. If
customization is performed during maintenance,
then support for on-line maintenance in a
distributed environment is also needed.
Independent of any specific collaboration or
interaction protocol for increasing reusability.
Support for hierarchically composing a
component from a set of components to address
complexity.

We will present a framework for distributed
components to satisfy the specified properties. A
framework is a set of cooperating classes that make
up a reusable design of a specific class of software,
which can be customized by application software
developer [8]. On the other hand, a component
framework, as described in [9], is a software entity
that supports components conforming to certain
standards and allows instances of components to be
plugged into the component framework. Unlike the
aforementioned definitions, the focus of our
framework is at the granularity of individual
components, which can be either atomic or
composite. We define an atomic component as a
component that does not encapsulate other
components to implement its services. A composite
component, on the other hand, is a container that
encapsulates two or more components to implement
its services. The encapsulated components are called
the subcomponents of the composite component.

4. Distributed Component Framework

A distributed component framework is a reusable
architecture that serves as a skeleton of a distributed
component. The framework implements a set of
specific services to facilitate various activities

112

relating to a distributed component. The interfaces of
the framework, as in a component, are represented in
a common representation language, such as CORBA
Interface Definition Language (IDL).

The framework satisfies the requirements [a-d] in the
following way: It separates the run-time operations
(i.e. service invocations) of a component from its
integration and maintenance time operations (i.e.
compatibility check, customization, etc.) by
distributing them over five standard interfaces. To
facilitate customization, the framework implements
an architecture query mechanism to provide the
information about its internal architecture at runtime.
To provide protocol independence, it enforces a
uniform method invocation style. Since the
framework is itself a component, it can be
instantiated, and then be integrated as a
subcomponent into a larger and more complex
component in a hierarchical fashion.

As shown in Figure I , the architecture of the
framework is divided into two layers:

Figure 1 : Simplified View of our Distributed
Component Framework

Management Layer: The management layer is
responsible for implementing the standard interfaces
(described later) of a distributed component. It is
mainly responsible for the following operations:

Dispatch method invocations to the appropriate
objects or subcomponents inside the framework

. Manage references and other information about
the objects or subcomponents and connectors
that reside in the Solution Layer. . Perform compatibility checks based on the
specification of a given target architecture . Mediate the communication among the external
plug-in components with the Solution Layer. . Provide secure architectural-reflection to
facilitate remote and on-line customization of a
component.

Solution Layer: This layer consists of objects or
components that actually implement the functionality
of the component. If the component is atomic, then
this layer only consists of objects. On the other hand,
if the component is composite, then two or more
subcomponents and connectors reside in this layer.
The objects and components do not communicate
with the management layer except to propagate any
event or method invocation to an external
component.

We now briefly describe the standard interfaces
implemented by the framework. In combination,
these interfaces actually provide the mechanism to
communicate with a component from different
viewpoints. Among the interfaces, the ICompatible,
IManage, and ICustomize interfaces are crucial
during component integration for their respective
functionality. The IService and IOutgoing are mainly
used when the component is already integrated and is
ready for execution. The objects inside the
management layer, shown in Figure 1, implement the
services published in the interfaces.

. IService: The IService interface publishes the
method-signatures of the services offered by the
component that is built by instantiating the
framework. Depending on the component, the
interface also exposes appropriate properties for
selecting a customized operation to configure the
component for a specific QoS.

. ICompatible: This interface provides methods
for performing non-functional compatibility checks
of the associated component. The inputs are mainly
passed as VO Automata. The interface provides
separate methods for checking compatibility based on
each non-functional attribute mentioned in Section 2.

. ICustomize: The ICustomize interface is used to
publish one or more plug-in interfaces of a
component. An external component, which
implements a plug-in interface, can be integrated
with the component that provides the methods as
published in the ICustomize interface. This allows a

113

component to accept any third-party implementation
during integration to extend its functionality.

. IManage: The IManage interface is used to
facilitate more extensive customization activities that
may be required during integration. In particular, it
implements the Architectural Reflection service,
which provides query facilities (called
QueryArchifecture in the implementation) to retrieve
a component’s internal architecture for adding,
deleting, or modifying subcomponents and
subconnectors. A portion of the retrieved internal
architecture consists of the references to the
subcomponents and ’ connectors. To support
hierarchical analysis, these references can be used to
recursively query the internal architecture of the
subcomponents until no composite subcomponents
can be found.

. IOutgoing: This interface allows a component to
publish any required service that is expected from the
underlying environment. In addition, the interface
includes the methods for the events that the
component may generate during its execution.

5. Distributed Connector

As mentioned in Section 3, a desirable property of a
distributed component is to make it independent of
any specific interaction protocol as much as possible
to increase its reusability. We address this issue by
using distributed connectors.

A Distributed Connector (DC) is a specialized
component that encapsulates a particular interaction
protocol, and provides specific interfaces to use it to
connect a set of distributed components that needs to
collaborate with each other using that particular
protocol.

The principal benefit of using DC in distributed
component integration is that it frees the components
from implementing any complex interaction protocol,
which makes the service interface of a component
(e.g. IService in our case) simple.

Although the concept of a connector is well known
for analyzing specific protocol in the software
architecture community, in our case a DC performs
the following additional responsibilities: . Publishes the supported protocol through a

standard interface for easy retrieval . Provides a mechanism to transfer method
invocations or event notifications among a set of
integrated components.

. Implement the supported protocol through a
collaboration of two or more distributed role
objects . Provides customized services, such as event
ordering, encrypted communication, or other
services with different QoS.
Encapsulates actual communication protocol,
such as TCP/IP or ATM.

As shown in Figure 2, the DC implements the
following standard interfaces:

. IEConnector: This interface is mainly used
when a DC is used to integrate two or more
components. It implements the following
functionality:
--Protocol Publishing: It provides I/O Automata-
based description of the protocol that is encapsulated
by the connector. This information is used by the
integration mechanism to identify the suitability of
the connector with the target architecture.
--Role Publishing: Since an interaction protocol is the
outcome of two or more collaborating roles,
IEConnector also publishes the specification of
individual role. Each role is assigned to a specific
component during integration.
--Customization: DCs expose properties that can be
used by an application developer to select the

Figure 2: A sample distributed connector that
implements the 2-phase Multi-server Commit protocol

114

appropriate communication QoS, such as turning
ordoff encryption, reliable event broadcast, priority-
based event delivery, etc.
--Persistency: The state of a connector consists of the
assignment of component to the roles and the
mapping of methods among the integrated
components. Such information is made persistent to
reactivate an application without re-integrating the
components and connectors at later times.

. IRole: This interface returns the references to the
role objects that reside in a DC. After the connector is
integrated into an application, the references are used
by the associated components to collaborate with
each other.

As described before, the protocol supported by a DC
is implemented through the collaboration two or
more role classes. Each role class can have multiple
instances. The Role Store object implements the
IRole interface, and stores the references to the role
objects. The Controller implements the ZEConnector
interface. It is also responsible for setting the
property values and connection information. The role
classes do not implement any specific transmission
protocol. Instead, the strategy pattern is used to
decouple the actual implementation of the protocol
from the references used by the role objects. Figure 2
shows two different implementations including the
default DCOM protocol, and a WinSock2
implementation that exploits the communication QoS
of an underlying ATM network.

6. Component Integration using DC

As described in [2], the integration tool plays the
central role during component integration. The tool
visualizes distributed components and generates
adapters for resolving parameter mismatches and
providing fault tolerance. In the following paragraph,
we describe part of the integration mechanism, as it is
used as a component integration tool. In particular,
we describe how two or more components are
integrated through a DC. The main task involves
deciding which role a component will play to
collaborate with other components. The choice of
roles is restricted to the types of connector used in the
integration. Once it is decided, the corresponding
component and the role are integrated using the Role-
Embedding procedure as follows:

1) The integration tool retrieves a reference to the
role object from the corresponding DC using its
IRole interface. To accomplish this, a role object
implements a DCA-compatible interface. (e.g. a
COM interface if the DCA is DCOM).

2) The reference from 1) is passed to the location of
the component through the underlying DCA.

3) The component uses its IManage interface to
store the reference to the role from 2).

4) A reference to the IService interface of the
component is passed to the DC using the same
mechanism described in 2).
During runtime, the DC uses the reference to the
component from 4) to forward any method
invocation to the component. Similarly, the
component uses the reference to the role from 2)
to dispatch its outgoing events.

5)

After the procedure is applied, each component in the
application software uses its assigned role object to
communicate with other components. The integrated
components produce an effect as if the interaction
protocol were already built into each component.

7. An Example

In this section, we illustrate the use of distributed
component framework and distributed connector.
This example, which is implemented using DCOM
on a 650 mb/sec Fujitsu ATM communication test
bed, integrates a set of components based on the
framework to develop a distributed network
management system.

The main operation of a distributed network
management system is to monitor a set of network
elements (NE), such as routers and gateways. The
NEs generate different events that must be
acknowledged and handled properly to keep the
network free of congestion, or connected all the time.

The requirements include concurrent and prioritized
processing of events, separation of event handlers
from the status monitors, fast propagation of event-
processing status, and others.

. Components and Connectors
Based on the requirements, three different
components are used in the implementation: Event
Dispatcher (CED), Event Processor (CEP), and
Monitor (CM). CEDs are installed on the NEs. They
monitor the associated device, generate, and dispatch
events to the CEP component. The CEP is
responsible for processing the events, and forwarding
the status to the CM component. The CM is
responsible for providing CUI interface to present
different information, such as the number of pending
events and percentage of deadlines missed.

Due to the event-based interactions among the
components, an Event-Notification (EN) connector is

115

used to connect the CEDs with the CEP. The
connector implements two roles - Event Source (ES)
and Event Listener (EL). Accordingly, it includes
two role objects with the same names.

L . . - . . J

Figure 3: Component-based architecture of the example system

’ Integration
As shown in Figure 3, three CEDs are considered in
this particular example. They are distributed over
three different sites S I , S2, and S3. The CEP and CM
components are installed on sites S4 and S5
respectively. Integration is accomplished through
embedding the roles of the EN with the appropriate
component. Since there are three CED components,
the connector is customized to provide three different
instances of the ES role. The instances are installed
on sites S1, S2, and S3. Similarly, the EL object is
installed on S4. This object is integrated with the
CEP, since the component only listens to events. To
enable fast propagation of event-status, the CM
component is integrated with the CEP through
another EN connector (shown as ATMC in Figure 3),
which is customized to provide access to ATM
network through the WinSock2 communication
library. To extend the functionality of the CEP to
handle new types of events, new subcomponents are
added through its IManage interface.

8. Discussion

Although our results are independent of any specific
middleware, we use DCOM as the underlying DCA
environment to implement the distributed component
framework and the distributed connector. The
framework is implemented as a COM component.
Architectural reflection is implemented through the
COM’s dynamic interface discovery and invocation
mechanism (IDispatch) and maintaining a data
structure inside the framework that holds references
to the subcomponents, subconnectors, and their
interconnection information. Currently, the sub-

components are implemented as out-process objects,
although both in-process and remote components can
be used seamlessly with the framework. The
connector is also implemented as a COM component
with additional capability to use WinSock 2 library to
run on our high-speed communication test bed
running on a 650 mblsec Fujitsu ATM switch.
Persistency of connector is achieved by
implementing COM’s IPersistStream interface.

An approach to component integration for distributed
application software development is presented. The
distributed component framework and distributed
connectors, and their importance in the overall
integration process are discussed. Future research
includes validation of the constructed software with
respect to the target architecture. The component
framework will be extended to allow components to
provide customized fault-tolerant services at the
component level.

Reference:
[l] S. Yau and B. Xia, “An Approach to Distributed
Component-based Real-time Application Software
Development“, Proc. 1st IEEE Int’l Symp. Object-
oriented Real-time Distributed Computing, April,

[2] S. Yau and B. Xia, “Object-Oriented Distributed
Component Software Development Based on
CORBA”, Proc. 22“d Int’l Computer Software and
Application Conference (COMPSAC 98), August,

[3] G . Wang, et. al, “Component Assembly for 00
Distributed Systems”, IEEE Cornputer, Vol. 32, No.

[4] M. Astley and G . Agha, “Modular Construction
and Composition of Distributed Software
Architectures”, Proc. Int ’ 1 Symp. on Software
Engineering f o r Parallel and Dist. Systems, 1998.
[5] R. Allen and D. Garlan, “A Formal Basis for
Architectural Connection”, ACM Trans. on Software
Engineering and Methodology, Vol. 6, No. 3, July

[6] D. Garlan, et. al, “Architectural Mismatch: Why
Reuse Is So Hard”, IEEE Software, Vol. 12, No. 6,
November 1995, pp. 17-26.
[7] N. Lynch and M. Tuttle, “Hierarchical
Correctness Proofs for Distributed Algorithms”,
Proc. 6th Ann. ACM Symp. on Principles of
Distributed Computing, August 1987, pp. 137-151.
[8] R. Johnson, ”Frameworks = (Components +
Patterns)”, Comm. ACM, Vol. 40, No. 10, October

[9] C. Szyperski, Component Software: Beyond
Object-Oriented Programming, Addison-Wesley,
1997.

1998, pp. 275-283.

1998, pp. 246-251.

7, July 1999, pp. 71-78.

1997, pp. 213-249.

1997, pp. 39-42.

116

