
Autonomous Decentralized System with Event Service for
Information Services

Stephen S. Yau, Ning Dong, and Fariaz Karim
Computer Science and Engineering Department

Arizona State University
Tempe, AZ 85287-5406, USA

Email: yau@asu.edu

Abstract
Autonomous Decentralized System (ADS) has the
properties of online expansion, online maintenance
and fault tolerance, which are among the important
features for next generation information services.
Since information services require transfer of large
amounts of data with different levels of Quality of
Services (QoS), it is necessary to have an ADS
architecture to satisfy these requirements. This
approach uses event service as the communication
middleware and ATM network to handle large
amounts of data and satisfy various QoS
requirements.

Keywords: Autonomous Decentralized System,
information services, event service, ATM network,
filtering, QoS.

1. Introduction
ADS has been successfully applied in various

areas [1,2], primarily related to control systems. In
order for ADS to be applied to next generation
information services, it needs the following features:
a) The user has access to diverse types of services

through one system even though these services
have different functionality and various QoS [3].

b) Not only textual information, but also multimedia
information are accessible through one system.

c) Service suppliers and consumers can be added
and removed easily.

d) Each user has his/her own view of the
information services and all the actions of a user
are usually confined within the user's own virtual
information space.
Accordingly, the ADS system requirements for

information services are:
1) Different types of services are combined over a

network, but they are autonomous.
2) The amount of data to be transferred is very large.
3) Different QoS requirements need to be satisfied

by the system. Even for the same data, different

users or the same user in different environments
will need different QoS.
The current ADS systems [1-5] use Data Field

(DF) as a communication layer and all the information
is broadcasted around the DF. An Autonomous
Control Processor (ACP) [1,2] receives all the data
broadcasted regardless whether it needs the data. DF
architecture can satisfy the data communication
requirements for those applications that are not
information intensive, such as manufacturing control
systems, transportation control systems, or those
information systems connected to control systems [3].
For information services, where the transfer of large
amounts of data is needed, the network traffic is a big
problem even when broadband networks are used.
Currently, ADS systems are built on Internet layer on
top of TCP or UDP layer running on Internet Protocol
(IP) [2,4]. The services provided by the Internet layer
are not sufficient to satisfy the necessary QoS for
information service applications [6,7].

In this paper, we will present an approach for
ADS to support the information services using event
service and ATM network to satisfy various QoS
requirements.

2. Our Approach
In our approach, we use event channels [8] and

ATM network to construct the communication
backbone of the ADS system. Multiple event channels
are connected to each other through ATM network to
form a network of channels. User programs
communicate with each other through event channels.
Figure 1 shows the topology of the communication
backbone, where the solid links indicate direct
connections and the dotted links represent connections
through other event channels. Applications are self-
regulated because event service provides de-coupled
asynchronous group communication. The
communication between user programs is through
sending and receiving information. Hence, there are
two roles with respect to each application modules:
supplier and consumer. Suppliers provide information

and consumers process information. When a supplier
needs to send information, it delivers the information
to the event channel without telling the recipients of
the information. The information is transferred in the
form of event, which is attached with event type. The
event channels broadcast the information to all the
consumers that need the information according to the
event type.

Figure 1: The communication backbone
in our approach.

they want by registering the types of events. The
information will be broadcasted among event
channels. Whenever an event channel receives an
event from a supplier, it will transfer the event to the
consumers that are connected to it and already
registered for this type of event. In addition, the event
channel will also deliver the event to other event
channels that are connected to it if some consumers of
this type of event are connected to these channels.

Our approach can satisfy various QoS
requirements through ATM network and event
service. When consumers register to the event
channels, they can also tell the event channel the
desired QoS of the information. While the consumer's
desired QoS is broadcasted, Virtual Circuits (VCs)
between channels are set up. To satisfy multiple QoS,
event channels maintain multiple VCs. An individual
VC is responsible for providing a single QoS type.
This arrangement is necessary to preserve the
semantics of each QoS type. Information will be
transferred along VCs so that different QoS will be
satisfied. Event service performs aging of events by
deleting expired events and provides priorities of
events by transferring events to other channels
according to the priority of events.

To reduce the network traffic, event channels use
filters [9] to prevent the propagation of information to

unnecessary destinations. In our approach, the
consumers tell the event channels what information

Figure 2 shows the ADS architecture of our
approach. Application modules send messages to and
receive messages from event channels through event
service interface. Filters are used to propagate events
based on user interests in order to reduce network
traffic. QoS requirements are satisfied through QoS
management at the event channel level and through
VCs at the ATM network level. From the perspective
of other ADS system implementations [1-4], our
architecture can be viewed as a system where each
ACP is connected to multiple DFs simultaneously, and
each DF has different QoS characteristics.

Figure 2: Our ADS architecture using event
channels and ATM network.

3. Communication Backbone
Equality, locality and self-containment are the

three requirements of ADS components [1]. As one of
the asynchronous group communication, event style
communication [8] can satisfy the suppliers and
consumers with these three requirements. For
information services, each supplier or consumer
should be self-regulated and hence information
services also need the appropriate communication
mechanisms to provide suppliers and consumers with
equality, locality and self-containment.

In our approach, we use event service to serve as
the communication middleware, which is responsible
for sending and receiving information between
suppliers and consumers. Every supplier and
consumer connects to event channels and all the
information to be delivered is sent to the channel. The
event channel will receive the information and then

Event
Channel

Supplier/
Consumer

Event Service Interface

Event Channel

Filters QoS

Communication Layer

ATM Network

Application
Module 1

Virtual Circuits

Application
Module n

send the information to the interested consumers that
are connected to it and to other channels that need
these information. So the consumers do not need to
know the locations of the suppliers, the failure of one
supplier or consumer will not affect the others, and
new suppliers or consumers can be added easily.

Information is transferred in the form of event.
The suppliers and consumers communicate with each
other only through events. An event consists of event
head and event data. The event data is the passing
information. Even though the event data can be of any
length and any type, the amount of data in each event
should depend on the consideration of QoS. The event
type and its QoS requirements are parts of the event
head. Instead of specifying the recipient's address, the
event type is used to identify the event. The
supplier/consumer can dynamically specify QoS
parameters while sending the event.

4. Filtering of Events
In information services, the amount of data

transferred is very large and the communication
governs the system scalability. One of our goals of
using event service is to reduce the network traffic by
filtering the events [10]. However, current CORBA
event service specification [8] does not include the
feature to reduce the network traffic. In this section,
we will present a filtering technique to reduce data
transfer in event service.

Figure 3: The structure of an event channel.

In our approach, we consider user interests in
order to reduce unnecessary data transfer. Consumers
express their interests by registering the interests with
the channels along with desired QoS. A channel uses
this information to propagate events to consumers.

The structure of an event channel is shown in
Figure 3. When an event comes from a supplier, the
request handler will distinguish the type of the event.
If it is registration information about the consumer's
interest, the propagator will set up the paths (VCs)
from this channel to the consumer and save it as
propagation information. Then, the channel will
propagate the registration information to its neighbors.
If the event is not registration information, the pusher
will save it in the proper position in event queue
according to its priority and then send it to other
channels or interested consumers directly connected to
the event channel. The cleaner is responsible for
deleting those events that are older than their specified
age limits.

For large-scale distributed systems, it is not
realistic that each channel knows all other channels.
We assume each channel knows only the addresses of
its neighbors. The following subsections describe the
filtering technique in our approach.

4.1 Setting up Propagation Paths

Figure 4: An example for setting up paths.

The propagator in the event channel is
responsible for setting up paths between suppliers and
consumers. When a consumer registers a type of event
to its primary channel, the primary channel propagates
the registration information to its neighbors. Each
neighbor then notifies its own neighbors until all the
channels receive the registration information. In
addition, whenever a channel receives the registration
information, it identifies all the shortest paths from
this channel to the consumers interested in the
corresponding event type. The shortest path means

Normal Information

Request Handler

Propagator Pusher

Cleaner

Propagation
Information

Event
queue

From
client or
channel

User interests

To
channel

To
channel

and
client

Event channel

Register type x

Register type x

2 3

4

5

6

7

1

that the number of hops of the path from the channel
to the consumer is minimal. For one consumer, there
may be several shortest paths from a channel.
Consider the example shown in Figure 4. Assume that
a consumer of channel 3 and a consumer of channel 7
send the registration information for type x events. In
Figure 4, the thick line denotes that the channels on
both sides of the line know each other. The solid thin
lines represent the paths from other channels to
channel 7. The dashed and dotted lines represent the
paths from other channels to channel 3. Channel 2
keeps four propagation paths for events of type x: {1,
3}, {5, 3}, {4, 7} and {5, 7}. The first two paths are
used for consumers connected to channel 3 and the
rest is used for consumers connected to channel 7.

4.2 Selected Propagation of Events
After the propagation paths are set up, the pushers

in event channels are responsible for propagating the
events from suppliers to all interested consumers
through the propagation paths. Since there may be
multiple paths from a channel to consumers, we need
to select a set of paths that reduce the network traffic.
However, finding an optimal set of paths for reducing
traffic in a large network remains a difficult and open
research problem. Although several strategies, such as
admission control, load shedding, and choke packets
[11] address this problem, each of them brings its
share of advantages and limitations. Keeping this in
mind, we present here a procedure that provides a
reasonable event propagation scheme in conjunction
with other existing approaches.
1. A design-time analysis should be done on the

kind of information that will propagate in the
system. Based on the requirements, a set of
categories must be determined, such that each
category has different priority. These categories
are global, and independent of the QoS specified
by the consumers during the registration period.

2. Event channels maintain corresponding queues
for each category, so that the volume of pending
events of each category can be determined easily.
In addition, a maximum watermark should be
determined for each category.

3. Initially, the supplier's primary channel is
responsible for delivering the event to all the
interested consumers. The primary channel selects
a set of relay channels that appear first on the
propagation paths. Each relay channel then
becomes responsible for delivering the event to a
subset of all the interested consumers in such a
way that as a whole the relay channels cover all
interested consumers. Each relay channel in turn
selects its own relay channels based on its own
propagation paths. This procedure continues until
all the consumers receive the event. If several

alternative relay channels exist, the least loaded
one is chosen. If a relay channel is not available, a
neighbor channel is chosen as a replacement.

4. Normally, an event channel propagates events of
all categories according to their corresponding
QoS. If sustained arrivals of higher priority events
cause the lower priority events to reach the
watermark, the channel simply stops accepting
any registration information for the corresponding
category. In addition, using any of the congestion
control strategies, it requests the neighbor
channels to stop the delivery of events of this
category. For the highest priority events, such as
911, the watermark can be set very high.
Moreover, the channel dynamically upgrades the
priority of the lower priority pending events by
setting a timer, and start propagating them. The
timer stores the length of the period for which the
new priority is valid. The timer information is
attached with the events, which also store the
information related to the old priority.

5. The lower priority events promptly propagate
through the network as long as the new priority is
active. However, when the time is finished, it
resumes its original priority. In this case, the
events start following the specified QoS as
normal. It also may accumulate in the queues.
However, due to the dynamic priority upgrade for
a specified period, the events move closer to the
destinations even in case of a sustained high
network load. The procedure continues until the
events are either delivered or deleted due to the
aging limit.
Using the above scheme, whenever the channel

selects the next channel, it tries to minimize the time
to send the event to the consumers according to the
configuration and the current network load.

4.3 Addition and Deletion of Channels
Since channels may be added or removed, the

configuration of the system may change and affect the
propagation path set.

When a new channel is added, it will have its own
propagation list through its neighbors. We need to
consider whether the number of hops in the shortest
paths will decrease when other channels send events
passing the new channel. For each neighbor of the
new channel, the new propagation paths containing
the new channel will be identified and compared with
the old paths. The shorter paths are selected and the
procedure will continue until no new paths containing
the new channel reduces the length of paths. Figure 5
shows the changes of paths after a new channel,
channel 8, is added to the example shown in Figure 4.
The shortest path from channel 1 to the consumers
connected to channel 7 is changed to going through

channel 8. When a channel is removed, only its
neighbors are notified and the propagation paths that
include the channel to be deleted will be removed. If
the channel to be deleted has some consumers, de-
registration information will be propagated to all other
channels, and those channels will delete the
propagation paths containing the deleted channel.

Figure 5: The propagation paths after channel 8
is added for the example in Figure 4.

5. Fault Tolerance
We incorporate fault tolerance in our ADS

architecture at two levels.
At event service level, channel failures are

tolerated by dynamically reconfiguring the
connections between the consumers/suppliers and
event channels. It is accomplished by the interface
residing in the consumer/supplier or pushers in event
channels as shown in Figure 6. The interface contains
the list of event channels that can be physically
connected to the application modules with their
registration information. The application modules
send events to the interface and the interface selects
one physical channel that the application modules will
be connected to. Whenever a channel breaks down,
the interface is responsible for connecting the
application modules to another working channel and
sending the registration information to that event
channel. On the other hand, the event channels keep
the information of the addresses of other channels that
they can be connected to. Each channel keeps a list of
the paths from this channel to the consumers.
Whenever an event channel wants to transmit an event

and finds that it cannot communicate with one of its
neighbor channels, it uses other alternative paths in
the list. If all the paths in the list are not available, the
channel can send the event to one of its neighbor
channels and that channel is responsible for sending
the event.

Figure 6: The interface between a consumer/
supplier and event channels.

At the ATM level, channel replication along with
ATM group addressing feature [15] is used for
providing transparent fault tolerance service. In this
scheme, each replicated member of the channel group
uses a group address in addition to an individual
address. A message bound for a specific group address
reaches any member of the associated group. If for
any reason a member becomes unavailable, the
message simply gets delivered to any of the remaining
working members of the same group. The members
themselves maintain a consistent state by exchanging
messages using their individual addresses, which may
be hidden from the information service applications.

6. Bandwidth Management
 In order to efficiently use bandwidth and provide

priority-based services, we use event service in
conjunction with the ATM communication layer.
Event channels use aging of events as a criterion to
filter out unnecessary events [10]. For a highly loaded
system, this approach can save a sufficient amount of
bandwidth. Either the supplier or the consumer can
specify the aging limit of an event. Since this
approach takes the focus on the event channel level, it
can be implemented regardless of the nature of the
underlying network.

To provide prioritized services, event channels
use priority queues. In addition, channels can use the
underlying ATM communication layer to reserve and
use VCs to provide end-to-end QoS. The QoS type of
each VC can be determined as a function of the
priority and the size of desired information.

Register type x

Register type x

2 3

4

5

6

1

87

Physical link

Physical
link

Physical link

interface

App. Module

Event
Channel

Event
Channel

Consumer
/supplier

Event
Channel

Now, we would like to describe our
communication layer, as shown in Figure 7, which has
the main distinctions with the introduction of QoS-
aware Connectors (QC). QCs can be independently
configured to satisfy different levels of QoS within a
system running various applications. To control the
priority and invocation of the QCs, we use Reactors
that take actions based on send or receive operations
of new data or a priority change. Moreover, the
communication layer incorporates a Distributed QoS
Manager, which is used to monitor, specify, and
control the types of QoS used across a collection of
systems.

The main objective of this layer is to serve as a
mediator between the event channels and the
underlying ATM-based network in such a way so that
both parties agree and abide by a particular QoS
contract all the time. Our communication layer has
five service components to satisfy this requirement, as
shown in Figure 7.

Figure 7: The communication layer between an event
channel and ATM network.

Local QoS Manager (LQM): The LQM provides a
microscopic view of the local system resources in
terms of different QoS. It provides programmable
interface to the event channels, which includes request
for a new VC or reservation request for a specific

amount of bandwidth. It is responsible for admission
control mechanisms. By collaborating with the
Distributed QoS Manager, its resource management
policies stay consistent with the global policies, which
may be enforced by the higher authorities. Although
each request for a new connection goes through the
ATM Call Admission Control (CAC) [15], LQM is
still required to perform resource management on the
end system’s side. This enables a system to control a
variety of QoS types on per process or thread basis.
To be consistent with the CAC scheme, LQM
maintains two main resources – bandwidth and buffer.

Distributed QoS Manager (DQM): The DQM
provides a macroscopic view of QoS in a collection of
systems, which may be governed by a specific group
(e.g. the financial branch of a company). Using DQM,
it is possible to employ QoS across a collection of
channels. For example, it is possible to specify the
maximum amount of bandwidth that can be used by
all the PCs in an organization. DQM acts as a
supervisor to LQMs to enforce the global QoS
policies. As a result, if the individual QoS
requirements of an application does not meet or
exceed the enforced QoS (e.g. security level), LQM
will deny or upgrade the request.

QoS-aware Connector (QC): Whenever a request
for a connection is approved, a QC is created. Each
QC is responsible for almost all aspects of a
connection, including VC management, error
correction, message retransmission, connection
establishment after a failure, and runtime QoS
enforcement. A QC communicates directly with the
application. Each QC component maintains a QoS
profile of a connection, which is used, for example, to
provide a constant flow of traffic entering a VC or to
maintain the QoS contract. It also provides traffic
shaping operation for the applications that exceeds the
QoS requirements. Since many VCs can be connected
to one system, multiple QCs with different QoS
profiles may exist. To provide security, QCs can use
the public-key cryptography mechanism. The QCs are
scheduled, started, and preempted by the Reactor
component.

Reactor: A reactor can be considered as a
manager for the QCs. It schedules and dispatches QCs
whenever data arrives from the network to the channel
or applications perform a send or receive operation.
Based on the priority policies, it dispatches
appropriate QC in order to process the data. In the
simplest case, the priority can be based on RMA-like
scheduling algorithms, where the priority is based on
the frequency of send and/or receive operations.

Signaling Module: The signaling module is
responsible for connection establishment and
cancellation. In our implementation, we plan to use
Q.2931 protocol [15]. A separate signaling module

dispatch

Event Channel

LQM

Connection
Request

DQM

QoS Policy
Control

Buffer
Reactor

Send/Receive

Interrupt

Signaling
Module

ATM Adaptation
Layer

QC

ATM Driver

results in a flexible architecture since it can be
changed easily without changing other parts of the
communication layer.

7. Interactive Communication
For highly interactive communication between a

consumer and a supplier, it is not efficient if message
is broadcasted. On the other hand, the autonomy of the
ACPs should not be violated. In our approach, session
management service from the underlying
communication layer is used to enforce the autonomy
and the efficiency.

Initially, the consumer registers for a specific
event – a service event. Like normal events,
consumers will compose an event registration by
including the type of the desired service, which will
uniquely identify a specific service category and the
semantic information of the service. The consumer
will register its interest with its primary channel, and
the channel will broadcast the event as usual.

In response, several suppliers may be willing to
provide the service. Suppliers can register their service
types with their primary channels. The channels will
send a reply-to-service event to the primary channel of
the consumer. The primary channel will choose a
supplier based on the order of reply or additional
semantic information. Finally, a session will be setup
between the primary channels according to an agreed
QoS. A session can be realized by setting up a
dedicated VC between the primary channels. The
session will be torn down after the service is
terminated.

8. Transaction-Based Communication
In our approach, a transaction is defined as a

collection of events that are sent together and the
automicity and order of events are preserved.

Atomicity means that either all the events will be
received or none of the events will be received by the
consumer. A transaction is considered as one big
event and given an event number. When a supplier
sends an event in a transaction, the event will be given
a sequence number in this transaction. The last event
in the transaction will also be given an ending flag.
The consumer will wait until all the events in the
transaction arrive. If any of them is missing, other
events in that transaction will be discarded.

For some applications, all the receivers need to
receive the events in the same order that they are sent.
This can be done using ATM Point-to-Multipoint
protocol and ATM cell sequencing techniques. Using
the Point-to-Multipoint protocols, a single message
can be sent to all the receivers transparently [15].
Since ATM cells in a particular connection are
guaranteed to arrive in a given order, a set of events

sent to multiple receivers also arrive in the given
order.

9. On-line Development and Expansion
Our approach also provides on-line expansion

and development, which are indispensable features in
ADS. Because event service provides de-coupled
asynchronous communication, applications connected
to the event channels are autonomous. Consequently,
an application can be easily added and deleted without
affecting other applications.

On-line development can be achieved using a test
flag in the event structure. The applications under
development send events with the test flag on while
other applications turn the flag off. Events with test
flag on are not used for any computation. Hence, these
events do not interfere with the regular applications
[4].

10. An Illustrative Example
To illustrate our approach, we use a wide area
information service system as an example. The
requirements of the system are:
1. The user can access diverse types of services

without specifying the locations of the service
suppliers. The services available are: high priority
services: emergencies, such as 911; middle level
priority services: high priority business
applications; regular priority services: ordinary
consumer services such as public transport, news,
and library information.

2. The user has the option to specify the quality of
the service he/she wants. The desired QoS of
emergency applications is that all the updates
must be propagated in three seconds. The age
limit of high priority business application events
is ten seconds.

3. The user is not aware of failure of part of the
network or active nodes.

4. Dozens of regions are connected together and the
system should have the capability of adding and
removing service suppliers and consumers on-
line.
In this example, all service suppliers and

consumers are connected through their corresponding
primary channels. All information is transferred
through channels in the form of events. When a
supplier sends an event, it reaches the primary channel
first. The primary channel then sends the information
to all possible consumers. Since the consumers and
suppliers communicate only through events, service
suppliers are transparent to the consumers. As a result,
adding new service suppliers does not affect any
existing suppliers and consumers.

Since there are three different levels of priorities,
each channel maintains three event-queues, which

correspond to the three priority levels. For instance,
911 events have the highest priority, and thus they are
delivered first. The business applications events, such
as ordering information, documents, etc. have the
second highest priority. The rest, such as library
events, have the lowest priority. Before any 911
information is sent, dedicated VCs are set up among
the channels for fast propagation. The traffic
characteristic of the VCs in this case is CBR, which
provides guaranteed bandwidth. The required
bandwidth is computed by the LQMs based on the
size of every 911 data. On the other hand, when
business application and library events arrive on the
channels, the business events are processed first.
However, in case of sustained arrivals of business
events, the library events are propagated in a periodic
basis, such that they do not get accumulated in the
channels with the possibility of queue overflow and
congestion.

Figure 8: An example of information services system.

Whenever an event channel breaks down or a link
between event channels and an event channel or
supplier/consumer is broken, the interfaces residing in
the consumer/supplier or the event channel will try to
find another working event channel or link, which is
done transparently to the supplier and consumer.

11. Discussion
In this paper, we have presented an ADS

framework using event service and ATM network for

the next generation information services. We have
showed how to use the filtering technique in event
service to reduce traffic and how to satisfy various
QoS requirements for various services over a network.

More work needs to be done for the
implementation of our approach. The filtering
technique may be explored further to have a more
efficient and systematic method for reducing network
traffic. More research is needed to identify the
appropriate watermark values for different system
configurations. Additional QoS requirements, such as
security, need to be considered in the future.
Furthermore, we plan to use metadata as the content
indicator to identify different events instead of only
using event types since an event type itself is not
sufficient for the semantic representation of the event.

Acknowledgment
This work was partially supported under the

collaborative agreement between the Arizona State
University and Hitachi, Ltd.

References
[1] K. Mori, "Autonomous Decentralized Systems: Concept,
Data Field Architecture and Future Trends", Proc. ISADS
93, March, 1993, pp. 28-34.
[2] H. Wataya, K. Kawano, H. Keijirou, "The Cooperatin
Autonomous Decentralized System Architecture", Proc.
ISADS 95, April, 1995. pp 40-47.
[3] H. Kuwahara, "Experiences Teach Us the Future of
Autonomous Decentralized Systems", Proc. ISADS 1997,
April, 1997, pp 169-175.
[4] S Sameshima, K. Kawano, J. Kumaama, T. Ito, K. Inoue,
S. Fujishiro, "An Autonomous Decentralized System
Architecture and Techniques for On-line Development and
Maintenance", Proc. ISADS 97, April, 1997. pp 121-128.
[5] K. Mori, "Applications in Rapidly Changing
Environments", Computer, April, 1998. pp 42-44.
[6] R. Ahuja, S. Keshav and H. Saran, “Design,
Implementation, and Performance Measurement of a Native-
Mode ATM Transport Layer", IEEE/ACM Transactions on
Networking, Vol. 4, August, 1996, pp. 502-515.
[7] D. Comer, Internetworking with TCP/IP - Principles,
Protocols, and Architecture, Prentice Hall, 1988.
[8] OMG, CORBA Services, Common Object Services
Specification, 1997.
[9] S S. Yau, C. Gao, and F. Karim, "Object-Oriented Real-
time Event Service for Large-scale Distributed Systems",
Proc. IEEE Workshop on Middleware for Distributed Real-
time Systems and Services, December, 1997. pp 196-203.
[10] C. Gao, "Object-Oriented Event Service and
Management for Large-scale Distributed Systems", Ph.D
dissertation, 1998.
[11] A. Tanenbaum, "Computer Networks", 3rd Edition,
Prentice Hall, 1996.
[12] T. Kwok, ATM - The New Paradigm for Internet,
Intranet and Residential Broadband Services and
Applications, Prentice Hall, 1998.

C2

C5
C6

C3

C1

C4

: Business
Applications : Entertainment

 : Public Transport
information

: Library : DPS 911

: User

