

Incorporating Situation Awareness in Service Specifications

Stephen S. Yau and Junwei Liu
Arizona State University

Tempe, AZ 85287-8809, USA
{yau, junwei.liu}@asu.edu

Abstract

Service-Oriented Architecture has the major
advantage of enabling rapid composition of distributed
applications from various services, and has become
increasingly popular for many large-scale service-
based systems in various application areas, including
scientific collaboration, e-business, health care,
military, and homeland security. Situation awareness
(SAW) is the capability of the entities in a service-
based system to be aware of the situation changes and
automatically adapt themselves to such changes to
satisfy user requirements, including security and
privacy. The continuing evolutions of the entities and
environment makes SAW one of the most desired
features to support dynamic adaptive computing in
service-based systems. In this paper, the relationship
between contexts/situations and services in situation-
aware service-based systems is identified and an
extension of OWL-S with situation ontology, called
SAW-OWL-S, incorporates SAW in service
specifications is presented. An approach to generating
service specifications for situation-aware service-
based systems using SAW-OWL-S and the system
diagram of situation-aware service-based systems
using SAW-OWL-S are presented.

Keywords: Service-oriented architecture, situation
awareness, service specification, web ontology
language for Web services, service-based systems.

1. Introduction

Service-based systems are based on Service-
Oriented Architecture (SOA) [1], which has become
increasingly popular for many large-scale service-
based systems in various application areas, such as
scientific collaboration, e-business, health care,
military, and homeland security. Service is considered
as a software/hardware entity with well-defined
interfaces to provide certain capability over

heterogeneous platforms. The major advantage of SOA
is its capability of rapid composition of distributed
applications from various services, regardless of the
programming languages and platforms used in
developing and running different components of the
applications.

In a service-based system, the entities and
environment all evolve dynamically, and the entities in
the system need to adapt themselves to such evolution
to achieve user objectives. Situation awareness (SAW)
is an important feature to support such dynamic
adaptive service-based computing. A situation is a set
of contexts in the application over a period of time that
affects future system behavior. A context is any
instantaneous, detectable, and relevant property of the
environment, the system, or users, such as location,
available bandwidth and a user’s schedule. SAW is the
capability of the entities in service-based systems to be
aware of the situation changes and automatically adapt
themselves to such changes [2, 3]. Situation-aware
service-based systems are more dynamic and flexible
to satisfy user requirements, including security and
privacy, than traditional service-based systems since
service discovery, service access and service execution
can adapt to situation changes.

To support situation-aware service-based systems,
both service specification and related context and
situation information need to be clearly specified and
shared among various entities of the systems. To
achieve this goal, the relationship between
contexts/situations and services needs to be first
identified and the incorporation of SAW in service
specifications needs to be addressed. In this paper, we
will identify the relationship between contexts
/situations and services in situation-aware service-
based systems, and an extension of OWL-S with
situation ontology, called SAW-OWL-S, that
incorporates SAW in service specifications will be
presented. An approach to generating service
specifications for situation-aware service-based
systems using SAW-OWL-S will then be presented,
and an example is given to illustrate this approach. The

system diagram of situation-aware service-based
systems using SAW-OWL-S will also be presented.

2. Relationship between Contexts
/Situations and Services

Most of traditional service specification approaches,
such as Web Ontology Language for Web Services
(OWL-S, formally DAML-S) [4] and Web Services
Description Language (WSDL) [5], describe the
service information in three categories: what is the
service? How to use it? How does it work? To support
SAW, services in service-based systems should be able
to adapt their behavior according to different
situations, which requires specifying contextual data of
services, the preconditions of services, the effects of
services and the triggering rules of services. Let us
consider the following scenarios to show the
importance of the relationship between
context/situation and service:
Scenario1. A user wants to print a document on a
nearby printer with least pending tasks.
Scenario2. A printer service requires that only the
user nearby can access it.
Scenario3. User A prints some document on a printer
for user B, after the printing job is done, user B should
know the document is ready for pickup.
Scenario4. When the presentation is finished, the light
in the room should be automatically turned on.

Scenario1 is a very common service discovery
problem. To evaluate whether a printer service is
nearby, the location of the printer must be described in
the service specification and the function of “nearby”
needs to be clearly defined. Furthermore, since there
are various entities in a service-based system, it is
necessary that the description of the location and
“nearby” must have formal semantics which can be
understood by different parties in the system. With
such formal semantics, although two different parties
in the system may have different definitions of
“nearby”, they can still understand each other.

Besides the static location contextual data, the
amount of pending tasks of the printer service
dynamically changes. One approach to addressing this
is that the printer service provides a process which can
return the current pending tasks upon request.
However, this increases the complexity of the printer
services. A more flexible approach is to describe the
current pending tasks as a context of the printer service
and let the context management component take care
of the update of the contextual data. Using this
approach, when the user’s request requires certain
contextual data of the service, the system only needs to
check whether a contextual data satisfying the user’s

request is associated with the service. New contextual
data, such as current memory usage of the printer and
the bandwidth of the connecting link of the printer, can
be introduced during runtime.

In Scenario2, the service has a pre-condition
defined on contextual data of the user. For a traditional
service specification approach, the pre-condition of the
process is defined on the input and internal parameters
of the process. We denote the pre-conditions which are
defined on external data of the service as external pre-
condition. Although the user can pass the location
information as input into the printer service, this
increases the printer service’s complexity and does not
support dynamic adaptation. A better solution is to
specify a situation of “nearby of printer’s location” as
the pre-conditions of the service. This will not increase
the service’s complexity and if the definition of the
pre-conditions is changed, only the service
specification needs to be changed.

The execution of services will also affect the
system, such as in Scenario3. We denote such a kind of
effect as service’s external post-conditions. Similar to
service’s external pre-conditions, we can specify such
external post-conditions of services using situations.

Finally, a service may also be triggered by certain
situations like in Scenario4. The service specification
should include the rule like “the service will be
triggered under what situations”. According to such
specification, situation-aware service-based systems
can perform the triggering action when the trigger
situation is satisfied.

Based on the analysis of these scenarios, the
following are the four main relations between
contexts/situations and services, which need to be
modeled in a service specification for situation-aware
service-based systems:
R1. Service’s contextual data: For each service, it may

have associated contextual data, which can be used
to determine whether certain situations are
satisfied.

R2. Situation pre-condition: The service may require
certain external pre-condition to be satisfied to
execute the process.

R3. Situation post-condition: The execution of the
service may result in certain external post-
conditions.

R4. Situation-service-triggering: The situation can also
be defined as the trigger of certain services.

3. Current State of the Art

Several specification languages have been
developed for specifying Web services. Among them,
WSDL and OWL-S are most popular. WSDL is an

XML-formatted language used to describe the
capabilities of a Web service as collections of
communication endpoints capable of exchanging
messages. WSDL provides a basic and simple
abstraction of Web services. It is a contract or
complete description that describes the components
being exposed, and provides the names, data types
(using XML Schema Definition), methods, and
parameters required to call them. The overall structure
of OWL-S includes three main parts: the service
profile for advertising and discovering services; the
process model, which gives a detailed description of a
service's operation, including the IOPE (Input, Output,
Precondition, and Effect) parameters of the process;
and the grounding, which provides the details on how
to interoperate with a service, via messages. OWL-S
provides the primitives for service descriptions in
semantic web. Both WSDL and OWL-S are widely
used service specification standards. However,
formalisms for expressing context and situation
information are not supported in both WSDL and
OWL-S.

To incorporate context awareness in service
specification, the Aspect-Scale-Context (ASC) model
and Context Ontology Language (CoOL) [6] can be
plugged in the DAML-S model to represent the context
information of services and enable context awareness
and contextual interoperability during service
discovery and execution. CWSDL (Context-Based
Web Services Description Language) [7] aims at
enhancing the actual service description language with
context-aware features. The context-aware service

discovery is also discussed in [7] by defining
ContextFunction to collect the related contextual data
of the service and electService to rank the services
based on service discovery request and contextual data,
including user preference. Another related approach [8]
targets at service collaborating in business
environments by defining a context for multiple
entities to work with and share execution-specific data.
Context attributes [9] are used to specify both static
and dynamic contextual data of services. However,
none of these approaches clearly define the relationship
between contexts/situations and services in service-
based systems and incorporate situation awareness in
service specifications.

A conceptual model for context/situation and the
relationship between contexts/situations and services
for service-based systems and a situation specification
example based on the conceptual model using F-logic
are presented in [10, 11]. In [12], a hierarchical OWL-
based situation ontology for situation modeling and
reasoning is presented. Since OWL-S is a widely used
service specification language, in this paper, we will
show how to extend OWL-S with the OWL-based
situation ontology [12] to incorporate SAW in service
specifications.

For the sake of completeness, we will briefly
describe the OWL-based situation ontology here. For
detailed description of situation ontology, the reader is
referred to [12].

As shown in Figure 1, the situation ontology models
context and situation in a hierarchical approach such
that the definitions for context and situation can be

Figure 1. The OWL-based situation ontology

easily shared and reused. The situation ontology is
extensible to user-defined domain specific situation
knowledge. The situation ontology can be roughly
divided to two layers: context layer and situation layer.

Context layer: The conceptual context definition,
the realistic contextual data and the value of the
contextual data are modeled using Context class,
contextData class and contextValue class. Any Entity
can specify associated contextual data using
relatedContextData property. The context value
belongs to contextValueDomain and context
interpretation between different domains is represented
as dataContextOperation. One special type of context
interpretation that provides Boolean output is defined
separated as booleanContextOperator. The
booleanContextOperator is used to define situations.

Situation layer: The situation layer is build on top
of the context layer to aggregate contextual data into
situations. Different Situations form a hierarchy based
on their derivation. The atomicSituation class
represents all the basic situations whose value is
directly derived from contextual data. The
compositeSituation class represents more complicated
situations: either the logical composition over other
situations (conjunctionSituation, disjunctionSituation
and negationSituation), or the temporalSituation whose
value is derived from the value history of another
situation. An Entity in the system may satisfies or
notSatisfy a situation.

4 Incorporating SAW in OWL-S

As mentioned in Section 2, there are four main
relations between contexts/situations and services,
which need to be specified for services of situation-
aware service-based systems. These situation-
awareness related service specification requirements
include service contextual data, situation pre-condition,
situation post-condition and situation-service-
triggering. These relations are also defined in the
conceptual model in [10, 11].

In our approach, the situation ontology is
incorporated in OWL-S to specify these situation-
aware features for services. We denote the extended
service specification ontology as SAW-OWL-S.
Figure 2 shows the key classes and relations in SAW-
OWL-S. The real-time timing aspects of service
specifications are not considered in SAW-OWL-S. The
integration includes following three aspects:
1. As an entity in situation-aware service-based

systems, services may have associated contextual
data. Based on such contextual data, whether
certain situation is satisfied by a service or not can
be determined. In SAW-OWL-S, the Service class

is defined as a subclass of the Entity class, so that
the object property relatedContextData can be used
to link related contextual data to the service and
satisfies / notSatisfy can be used to specify whether
the service satisfies a specified situation or not.

2. In OWL-S, the Process class models the internal
model of a service, which already defines the pre-
condition, post-condition, input, output and result
of processes. However, the pre-condition and post-
condition defined in OWL-S is based on the input
or internal parameters of the process. In order to
support external pre-conditions/post-conditions,
two object properties called
hasPreconditionSituation and hasResultSituation,
whose ranges are Situation class, are added in the
process class. The user can use these two properties
to define the external pre-condition and post-
condition relations between situations and
processes.

3. In the process class, an object property, called
triggeredBy, whose range is Situation class, is also
added. The user can use this property to define the
triggering relation between situations and
processes.

5 Service Specification for Situation-aware
Service-based Systems Using SAW-OWL-S

Our approach to service specification for situation-
aware service-based systems includes three steps:
S1. Specify the traditional OWL-S service

specification;
S2. Identify all the contexts and situations related to the

service, which need to be specified. For each of the
related contexts and situations, the user needs to

Figure 2. SAW-OWL-S (only related important

classes and relations are shown)

either specify an OWL specification based on the
situation ontology or finds an available one.

S3. Specify the related context/situation information of
the service as follows:
S3.1. The contextual data of the service is specified
using relatedContextData property of the service;
S3.2. The properties of the service
hasPreconditionSituation, hasResultSituation and
triggeredBy are then specified to the corresponding
situations.
The context and situation specifications used in

Step S2 can be shared and reused with multiple
components in service-based systems. The system may
have a repository of pre-defined context and situation
specifications.

To illustrate this approach, consider the following
scenario: There are five services involved in this
scenario: presentationService (S1), lightTriggerService
(S2), printerAService (S3), printerBService (S4) and
videoPlayBackService (S5). Suppose that userA needs
to give a presentation at a meeting. The presentation
service can be accessed by userA only if userA is
located in the meeting room and the light is dimmed
for more than two seconds. When the presentation is
finished, the full light should be automatically turned
on. After the presentation, userA wants to print several
reports with a printer on the same floor and only
printerA satisfies this constraint. The meeting is
recorded into video streams. After the meeting, userA
can access the video stream of the meeting only if the
device has broadband connections.

Following are the three steps in our approach,
1. The traditional OWL-S service specification for

these services is first generated;
2. The four contexts involved in the five services are

locationContext, lightContext, presentationStatus-
Context and networkBandwidthContext. Based on
these contexts, various situations are defined as
shown in Table 1.

3. Specify the relations between the context/situation
information and services as shown in Table 2.

6. SAW-OWL-S Situation-aware Service-
based Systems

With the SAW-OWL-S, SAW can be incorporated
into service specifications of traditional service-based
systems. In this section, we will present an overall
system diagram of SAW-OWL-S situation-aware
service-based systems, logic inferences on SAW-
OWL-S specifications and the interactions in SAW-
OWL-S situation-aware service-based systems.

Table 1. Specification of situations
Situation Definition
(Sit1)
LightOff
(atomicSituation)

hasContext: lightContext
hasBOperator: sameAsOp
hasArgument: falseValue

(Sit2)
LightOff3S
(temporalSituation)

composedBy: LightOff
hasTemporalOperator:
alwaysTrue
inTimePeriod: Past3S

(Sit3)
LightOn
(atomicSituation)

hasContext: lightContext
hasBOperator: sameAsOp
hasArgument: trueValue

(Sit4)
InConferenceRoom
(atomicSituation)

hasContext: locationContext
hasBOperator: sameAsOp
hasArgument: crLocation

(Sit5)
ReadyForPresentation
(conjunctionSituation)

composedBy: LightOff3S
composedBy:
InConferenceRoom

(Sit6)
PresentationFinished
(atomicSituation)

hasContext:
presentationStatusContext
hasBOperator: sameAsOp
hasArgument: trueValue

(Sit7)
OnSameFloorAsUserA
(atomicSituation)

hasContext: locationContext
hasBOperator: sameFloorOp
hasArgument:
userALocation

(Sit8)
HasBroadband-
Connection
(atomicSituation)

hasContext:
networkBandwidthContext
hasBOperator:
greatThanOrEqualToOp
hasArgument: 256KB

Table 2. Specification for the Relationship
between Contexts/Situations and Services

 S1 S2 S3, S4 S5
hasPrecondition-
Situation

Sit5 Sit8

hasResult-Situation Sit6 Sit3
triggeredBy Sit6
Related-
ContextData

 locationA,
locationB

6.1 SAW-OWL-S Situation-aware Service-
based System Diagram

SAW-OWL-S supports the specification of related
context/situation information of services. In Figure 3,
the system diagram of a situation-aware service-based
system based on SAW-OWL-S is illustrated. At the
center of Figure 3, service provider, service requestor
and service directory in the traditional SOA remain the
core of a situation-aware service-based system.

SAW-OWL-S in the system is used to describe the
service specifications together with related contextual
data and situation information. A knowledge base
stores the specifications, and an inference engine is
used to perform logic inferences on the specifications.
The system is built on top of the context
capturing/processing components, such as Context
Toolkit [13]. There is also a situationLogger
component associated with the knowledge base and
inference engine which will keep tracking of the
context/situation change, so that temporal situation
evaluation can be performed. As many service-based
systems are distributed and may not have central
control, the system shown in Figure 3 can have
different variations. For example, the service directory
can be centralized or distributed. Or there may be no
service directory in the system, and the service
providers and requestors work in a peer-to-peer mode.
Due to the limitation of computation power, the
inference engine and situationLogger do not need to be
run at each device. They can be deployed only at
powerful nodes, like gateways, and other devices can
interact with them through network interfaces.

6.2 Logic inferences over SAW-OWL-S
specifications

Various formal logic inferences can be performed
on SAW-OWL-S specifications for validation and
reasoning. They can be categorized to two types:
1. OWL ontology reasoning

SAW-OWL-S is based on OWL DL, which is
equivalent to Description Logic (DL). Automated
reasoning over the ontology can be performed using a
DL Reasoner, such as RACER [14]. Some of the
inferences include consistency check, subsumption
reasoning and implicit knowledge inference.
Consistency check determines whether a service
specification is consistent by reasoning if there is any
inconsistent ontology class or inconsistent ontology
instance in the specification. Subsumption reasoning
checks whether an ontology class subsumes another,,
and this information can be used to obtain all the
implicit subsume relations in the service specification.
Implicit knowledge inference can deduce the implicit
knowledge conveyed by the service specification.
2. First-order logic rule-based reasoning

The SAW-OWL-S specification also supports rule-
based First Order Logic reasoning. Since DL is a
decidable part of FOL, it is possible to convert the DL
equivalent – OWL DL ontology to FOL specifications
and perform reasoning using FOL theorem provers.
The basic ideas of transforming OWL representation to
FOL representation is to translate class references to
unary predicates, translate properties to binary
predicates and translate axioms appropriately [15].
There are some efforts to increase the reasoning
capability of OWL like SWRL [16], and to extend
OWL to support First Order Logic [17]. FOL rules can
be used to inference the situation value [12] and
whether a service specification satisfies user’s request.
For example, the service discovery matchmaker can

Figure 3. System diagram of SAW-OWL-S
 situation-aware service-based systems

inference whether the printer service satisfies the
OnSameFloorAsUser situation or not in the scenario
presented in Section 5 by using the rule generated from
the definition of OnSameFloorAsUser situation:
(? ?) (?)

(? ?) (?)
 (?)

service hasContextData lo lo present Location
lo hasValue v v sameFloor userLocation

service satisfies OnSameFloorAsUser

∧
∧ ∧

⇒

6.3 Interactions in SAW-OWL-S Situation-
aware Service-based Systems

With the incorporation of context and situation
information in services, the interactions among the
service provider, service requestor and service
directory can be extended to support SAW. The major
interactions in situation-aware service-based systems
are described as follows:
I1. Service advertisement: The service provider

advertises its specification in the service directory.
The service specification includes the traditional
OWL-S service profile, service model and service
grounding information. With the extended SAW
specification capability of SAW-OWL-S, the
service can also specify related contextual data and
external pre-condition/post-condition situations. It
can also specify in which situation it will be
triggered. The service directory verifies the
consistency of the specification and stores it in the
knowledge base.

I2. Service request: The service requestor queries the
service directory for a desired service. The service
discovery request mainly includes two parts: a
service template and a situation constraint set. The
service template gives a description of the desired
service. It may be as simple as some keywords or
as complicated as a full SAW-OWL-S service
specification. The situation constraint set includes a
set of situations and is used to filter out the
unwanted services which fail to satisfy these
situation constraints.

I3. Situation-aware service matchmaking: Upon
receiving a service discovery request, the service
matchmaker is invoked by the service directory.
The service matchmaker first uses the situation
constraint set to filter out unsuitable services. Then
all the suitable service advertisements are matched
with the request based on their SAW-OWL-S
specifications. A service with greatest similarities is
then returned. The situation-aware service
matchmaking includes three different levels of
matching: 1) Syntax-based matching as used by
most of the traditional service matchmaking
approaches, such as UDDI [18], which matches
services using keyword searching on profile fields;

2) Capability-based matchmaking, which is based
on the semantic similarities among ontology
concepts, such as the capability-based service
matchmaking approach [19]; and 3) Condition-
based matchmaking, which matches services based
on their pre-conditions and post-conditions.
Although the condition-based matching of software
components has been studied [20], there is no
service matchmaking approach based on conditions
due to the difficulty to specify external conditions
of the services. With SAW-OWL-S, the external
pre-condition and postcondition of a service can be
both easily specified using situations. The
subsumption relations among different situations
can be deduced using formal logic inference.
Hence, condition-based service matchmaking is
feasible for SAW-OWL-S situation-aware service-
based systems.

I4. Service request reply: Service directory replies the
service requestor with the best matched service.

I5. Situation-aware service access: The service
requestor accesses the discovered service using the
provided grounding information. The service
provider can verify whether the service requestor
satisfies its situation pre-conditions, including the
requirements for security and privacy
considerations.

I6. Service execution: After the execution of a service,
certain external post-condition will be satisfied.

I7. Service composition: Multiple services may
constitute a workflow to achieve user objectives
dynamically.

I8. Agent discovery: In SOA, a Web service is viewed
as an abstract notion that must be implemented by a
concrete agent. The agent is the concrete entity (a
piece of software) that sends and receives
messages, while the service is the abstract set of
functionality that is provided [1]. SAW-OWL-S
can also be used to describe the functionality
provided by a concrete agent and the
abovementioned service discovery approach can
also be used for agent discovery. This is useful for
finding and deploying a suitable agent to perform
certain functionality.

7. Conclusions and Future Work

In this paper, we have presented an approach to
incorporate situation-awareness in service
specifications for situation-aware service-based
systems using SAW-OWL-S, an extension of OWL-S
with situation ontology. We have also presented a
situation-aware service-based system diagram based on
SAW-OWL-S and the detailed interactions in the

system, including three different matching levels of
situation-aware service matchmaking.

Further research which needs to be done in this area
includes improving SAW-OWL-S to incorporate
temporal logic, improving the performance of logic
reasoning over SAW-OWL-S specifications, and
establishing algorithms for situation-aware service
matchmaking for trustworthy service discovery and
situation-aware service access control.

Acknowledgment

The work reported here is supported by the National
Science Foundation under grant number ITR-
CYBERTRUST 0430565. The authors would like to
thank Dazhi Huang of Arizona State University for
many valuable discussions.

References

[1] W3C, “Web Services Architecture,”
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.
[2] S. S. Yau, Y. Wang, and F. Karim, "Development of
Situation-Aware Application Software for Ubiquitous
Computing Environments", Proc. 26th Ann. Int'l Computer
Software and Applications Conf. (COMPSAC 2002), 2002,
pp. 233-238.
[3] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S.Gupta,
"Reconfigurable Context-Sensitive Middleware for Pervasive
Computing", IEEE Pervasive Computing, 1(3), July-
September 2002, pp.33-40.
[4] OWL-S: Semantic Markup for Web Services, Available
at: http://www.w3.org/Submission/OWL-S/.
[5] W3C, “Web Services Description Language (WSDL)
1.1,” http://www.w3.org/TR/wsdl.
[6] T. Strang, C. Linnhoff-Popien, and K. Frank, “CoOL: A
Context Ontology Language to enable Contextual
Interoperability”, Proc. 4th IFIP Int’l Conf. on Distributed
Applications and Interoperable Systems (DAIS2003), 2003,
pp. 236-247.
[7] Soraya Kouadri Mostefaoui, Hannes Gassert and Béat
Hirsbrunner, “Context Meets Web Services: Enhancing
WSDL with Context-Aware Features”, 1st Int’l Workshop on
Best Practices and Methodologies in Service-Oriented
Architectures, 2004. pp. 1-14.
[8] M. Chapman et al. D. Bunting. Web Services Context
Service Specification, Ver. 1.0. http://developers.sun.com/
techtopics/webservices/wscaf/wsctx.pdf , 2003.
[9] C. Lee and S. Helal, “Context Attributes: An Approach to
Enable Context-awareness for Service Discovery”, Proc. of
the Symposium on Applications and the Internet (SAINT),
2003, pp. 22--30.
[10] S. S. Yau, D. Huang, H. Gong and H. Davulcu,
“Situation-Awareness for Adaptable Service Coordination in
Service-based Systems”, Proc. 29th Ann. Int'l Computer
Software and Application Conf. (COMPSAC 2005), 2005, pp.
107-112.

[11] S. S. Yau, D. Huang, H. Gong, and Y. Yao, "Support for
Situation-Awareness in Trustworthy Ubiquitous Computing
Application Software", Jour. Software Practice and
Engineering, to appear.
[12] S. S. Yau and Junwei Liu, “Hierarchical Situation
Modeling and Reasoning for Pervasive Computing”, Proc.
3rd Workshop on Software Technologies for Future
Embedded & Ubiquitous Systems (SEUS2006), to appear.
[13] A. K. Dey, “Providing Architectural Support for
Building Context-Aware Applications”, PhD thesis, College
of Computing, Georgia Institute of Technology, 2000.
[14] V. Haarslev and R. Möller. “Racer: A Core Inference
Engine for the Semantic Web”, Proc.2nd Int’l Workshop on
Evaluation of Ontology-based Tools (EON2003), October,
2003, pp. 27-36.
[15] Using a First Order Logic Prover with OWL. Available
at: http://wonderweb.man.ac.uk/owl/first-order.shtml
[16] SWRL: A Semantic Web Rule Language Combining
OWL and RuleML. Available at:
http://www.w3.org/Submission/SWRL/.
[17] A Proposal for a SWRL Extension towards First-Order
Logic. Available at: http://www.w3.org/Submission/SWRL-
FOL/.
[18] “Universal Description Discovery and Integration
Platform”, Available at: http://www.uddi.org/pubs/
Iru_UDDI_Technical_White_Paper.pdf , September 2000.
[19] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara,
“Semantic Matching of Web Services Capabilities”, Proc. of
the 1st Int’l Semantic Web Conf. (ISWC2002), 2002, pp. 333-
347.
[20] A. Moormann Zaremski, and J. M. Wing, “Specification
matching of Software Component”, ACM Trans. on Software
Engineering and Methodology, 1997, pp. 333-369.

