
*This work is supported in part under a collaborative research
agreement between Arizona State University and Fujitsu, Ltd.

Component Customization for
Object-Oriented Distributed Real-time Software Development*

Stephen S. Yau and Fariaz Karim
Computer Science and Engineering Department

Arizona State University
Tempe, AZ 85287, USA

Email: {yau, karim}@asu.edu

Abstract
To apply the component-based approach to
distributed real-time software development, it is
necessary to identify components based on both
functional and real-time requirements. Since a
component may be acquired from external sources, it
becomes necessary during integration to ensure that
a component satisfies the real-time requirements of
the target application software. Since these
requirements vary, a component should be
customizable so that during integration it can adapt
itself to the specific real-time requirements of the
target-distributed software. To facilitate such
activities, it is preferable to have components that are
capable of performing self-customization using a set
of built-in services. In this paper, an object-oriented
real-time component framework and two built-in
customization services are presented to address the
specified issues.

Keywords: Component-based distributed software,
integration, customization, real-time, object-oriented
component framework, built-in services

1. Introduction

In component-based software development (CBSD)
approach [1,2], components can be acquired from
various sources with possible customization to fit
specific requirements, and then be integrated to build
the application software. Currently, the availability of
standardized middleware and component models,
such as CORBA, COM, etc. facilitate the
development of object-oriented distributed software
in a heterogeneous environment. However, current
middleware has serious limitations with respect to
object-oriented real-time distributed software
development [1-4].

Integration in component-based software
development is a difficult task due to many

incompatibilities that arise during integration [5],
especially in case of distributed real-time software
development due to the issues related to different
non-functional requirements (e.g., difference in the
deadlines, event-handling, synchronization, and
resource requirements, etc.) in addition to the
functional requirements of the target application
software. Before the actual integration is performed,
it is important to guarantee that the constructed
software will satisfy the specified real-time
requirements. On the other hand, it is also desirable
that a component is reusable in different distributed
real-time software systems. To address both issues, a
component should be customizable during integration
to fit itself into specific real-time requirements.
Based on this perspective, it is obvious that
component customization is a necessary activity in
the overall integration process, not an optional one,
and that components need to have a set of specific
built-in services to facilitate customization. In this
paper, we will present a framework and associated
built-in customization processes to facilitate the
integration in object-oriented distributed real-time
software development. Our approach to component
customization during integration fits seamlessly with
an integration process, such as the ones described in
[1,6].

2. Our Approach
Since the customization process is a part of our
overall component integration process, we need to
discuss it briefly. The integration process is general
in the sense that it can be applied to both real-time
and non real-time distributed software development.
Moreover, a principal goal of designing the
integration process is to make it independent of any
specific middleware implementation or system
architecture. Our integration approach can be
summarized in the following steps:

1) Specify the target architecture, including its real-

time requirements, such as task frequency,
priorities, and deadlines, etc.

2) Partition the specification from 1) into smaller
parts based on the nature of the collaborations
among the components of the target architecture.

3) For each sub-specification in the partitioned
specification from 2), choose a candidate
component based on the desired functionality.

4) Perform the compatibility check of the candidate
components based on the specification.

5) Based on the results from 4), customize the
candidate components to make them compatible
with the target architecture.

6) Integrate the customized components using
Distributed Connectors (DC) [6] to generate the
distributed real-time software.

The component customization process corresponds to
Step 5) of our integration approach. In this paper, we
will focus our discussion on two specific aspects of
component customization: task-priority of the target
architecture, and exception handling policy of the
target architecture. The overall customization
approach related to these two aspects can be outlined
as follows:

5.1) The Assigned System Tasks (ASTc) based on the
requirements of the target architecture is supplied to
the candidate component. An ASTc t of a component
c means that t has been identified as a required task in
the target architecture (to satisfy a specific
requirement), and c has been chosen to provide the
functionality for t.

5.2) The specification of the exceptional conditions
and the corresponding exception handling policy of
the target architecture are supplied to the component.

5.3) The ASTcs from Step 5.1) are mapped onto the
internal tasks of the component. The internal tasks
are used to implement the services published by the
component.

5.4) The priority of the internal tasks of the candidate
component is adjusted and their invocation sequences
are configured based on the results from Step 5.3). If
a conflict occurs, then a runtime-monitoring scheme
is used to resolve the conflict.

5.5) Based on the information from Step 5.2), the
internal events, which may potentially lead to
exceptional conditions, are monitored inside the
component. If such a condition arises, it is handled
according to the specification from Step 5.2).

At the end of Steps 5.4) and 5.5) a candidate
component is customized based on the task priority
and the exceptional conditions of the target

architecture respectively. In the remainder of the
paper, these customization processes will be denoted
as CPS and CEH respectively.

We will present in Section 3 an object-oriented real-
time component framework for facilitating
component customization. In Sections 4 and 5, we
will describe the layered architecture of the
framework. Both CPS and CEH customizations will
be discussed in Sections 6 and 7. An example will be
presented in Section 8 to illustrate the use of the
component framework and the CPS customization in
developing component-based distributed real-time
network management software. We will discuss the
implementation issues in Section 9.

3. Real-time Component Framework

To facilitate customization, candidate components
should have some specific built-in services that can
be systematically used during component integration.
These built-in services also need to be published by
the components so that an integration tool [1,2] can
easily identify if a candidate component has the
capability to customize itself. To address these issues,
the following desirable properties of a component has
been identified:

a. Appropriate interface for specifying the latency
and the required resources for each published service.
b. Support for easy identification of the outgoing
events generated by the component. The interface
must also publish the nature of the event generation
(e.g. periodic or aperiodic).
c. Built-in services for performing schedulability
analysis to identify self-compatibility based on the
target architecture.
d. Necessary implementation to enforce the
consistency of priorities of the internal tasks with that
of the target architecture.
e. Suitable support for handling different types of
exceptional conditions as specified by the
requirements.

Among these properties, the first two are the most
fundamental for component to be used in a
distributed real-time software. The information
presented in the interface is necessary for
determining if a component can meet the minimum
timing requirements. Properties c, d, and e essentially
correspond to a component’s ability to identify if it is
suitable to be used in a specific distributed real-time
software system. In particular, the requirements
specified in properties d and e are important since the
semantics of the target architecture should be

Figure 1: A Simplified View of the Real-time Component Framework (RCF)

<<Interface>>
IRTService

<<Interface>>
IRTCompatible

<<Interface>>
IRTManage

<<Interface>>
IRTCustomize

<<Interface>>
IRTOutgoing

RTCore

RTMonitor

The RTManagement Layer [common to all RCF-compatible components]

Object 1

Object 3

Object 4

Object n

Object 2

RTObject Store

The RTSolution Layer [unique to each to component]

RTArbitrator
<<Façade>>

RTDispatcher RTMediator

Incoming Event Queue

Outgoing Event Queue

preserved inside the component to guarantee the real-
time requirements of the target software.

Based on the above discussion, we will present an
object-oriented real-time component framework to
satisfy the specified properties. The key difference
between our framework and the concept of a
framework in general is discussed in [6].

A Real-time Component Framework (RCF) is a
specialized Distributed Component Framework
(DCF) [6]. An RCF serves as a reusable architecture
of a distributed real-time component, and implements
a set of common services for facilitating various
activities related to component integration and
customization. An RCF can be used as a reference to
generate suitable components for distributed real-
time software development.

Just as a DCF, an RCF separates the run-time
operations (i.e. service invocations) of a component
from its integration and maintenance-time operations
(i.e. schedulability analysis, customization, extension
of functionality, etc.) by distributing them over
several interfaces. The framework uses a layered
architecture to isolate the implementation of the
common services from that of its run-time services,
which usually are different depending on the
functionality of the component. An RCF can be used
to generate both atomic and composite [6]
components to address hierarchical composition of
complex components from simpler ones. It provides

an architecture-query mechanism to automatically
generate information about a component’s internal
structure to facilitate extension of functionality
during runtime.

As shown in Figure 1, the RTManagement Layer and
the RTSolution Layer constitute the layered
architecture of the framework. They are described in
Sections 4 and 5 respectively.

4. The RTManagement Layer

The RTManagement Layer is primarily responsible
for the following operations:

� Implement the common interfaces of a real-time
component (described later).
� Forward externally generated service invocations
to the appropriate objects or subcomponents [6].
� Manage references and other design-time
information about the objects or subcomponents and
connectors that reside in the RTSolution Layer.
� Implement several compatibility checking
algorithms to identify the suitability of the
component for use in a specific target architecture.
� Implement the necessary customization
algorithms and apply them during integration.

An important part of RCF is its interfaces, which
form the basis of a successful integration process.
They are briefly described below.

a) IRTService: The IRTService interface publishes
the services of the associated real-time component,
which is generated by instantiating the framework.
The services are declared in the following way:

[ssi, rti, [re
1

i, rc
1

i], [re
2

i, rc
2

i], … [req
i, rcfqi]],

where
ssi = the method signature of the ith service,
rti = the logical response time of the service,
rej

i = the jth resource required by method ssi,
rcfki = the consumption function for the jth resource as
required by method ssi.

b) IRTCompatible: This interface takes the
specification of the target real-time architecture [6].
The specification is derived in Step 2) of our
integration approach, which is presented in Section 2.
The interface provides separate methods for
performing different types of compatibility checks.

c) IRTCustomize: The IRTCustomize interface is
responsible for two services. It publishes one or more
plug-in interfaces of the associated real-time
component. The plug-in interfaces are used to publish
services that are required by the component from its
underlying environment or from external
components. Moreover, the interface publishes two
methods – RTCustomizePriority and
RTCustomizeException to perform the CPS and CEH
customizations as introduced in Section 2.

RTCustomizePriority: This method is used to
perform the CPS customization. Among other input
parameters, it requires the following data during its
invocation:

a) A set of ASTc, ST: [t1, t2, … tn], where ST ⊆ S*,

and S* is the set of all tasks identified in the
system architecture.

b) A set of tasks with their priority and their
deadlines, SPT: [[p1, d1], [p2, d2], [pn, dn] … [pn,
dn]], where pi is the priority and di is the deadline
of task ti, and ti ∈ ST.

c) A set of task frequency, SPD: [[fp1, fr1], … [fpn,

frn]], where fpi is the flag indicating if task ti is
periodic or aperiodic, and fri is the frequency of
task ti.

d) A set of task mapping relations Smr: [[t1, ssi], [t2,
ssi+1], … [tn, ssm]], where ti ∈ ST, and ssi is the ith
service as published in the IRTService interface.
The relations are used to identify the
correspondence between an ASTc with the
method ssi, which is published in the IRTService
interface of the corresponding component.

RTCustomizeException: This method is used to
perform the CEH customization. It mainly takes the
following information as its input parameters –

[edecli, pfi, pri, aci, rehj]
where
edecli = declarative specification of the conditions
that will lead to exception i,
pfi = propagation flag for exception i, indicates if the
exception should be self-contained or propagated,
pri = the desired priority of the exception handler for
exception i,
aci = specification of the action that need to be taken
if the exception is self-contained,
rehj = reference to a system-specific exception
handler that need to be invoked when the exception
occurs.

� IRTManage: It is mainly responsible for
providing the Architectural Reflection (AR) service,
which provides hierarchical query facilities to extend
the functionality of a composite component in a
distributed environment. Conceptually, the AR
service can be thought of as a mechanism to
systematically opening up a composite component in
order to peek its inside. Any reconfiguration can be
accomplished (after peeking into it) through the
Architectural Modification (AM) service. These
mechanisms can be used to remotely extend the
functionality of a real-time component without
shutting it down.

d) IRTOutgoing: In addition to specifying the
services that a real-time component requires from its
underlying environment, it publishes the internally
generated outgoing events in the following way:

[ei, fi, phi, expi],
where ei = the id of the ith event,
fi = the frequency of ei,
phi = period of ei, if applicable,
expi = a flag indicating if ei needs to be caught
externally.

The data published in this interface is used mainly in
two ways – to facilitate schedulability analysis during
component integration, and to connect the candidate
component with another component, a connector, or
an adapter [1,2] that is interested in the published
events.

As shown in Figure 1, the objects of the
RTManagement Layer implement the described
interfaces. The RTDispatcher object is actually a
Façade [7], which connects the IRTService interface
and the objects that implement the services of the
component. It also invokes a set of RTMonitor
objects, which are used to monitor the tasks in the

RTSolution Layer. The RTArbitrator implements the
IRTCompatible interface and the compatibility
checking algorithms. RTCore, on the other hand,
provides both AR and AM services. The RTMediator
object implements different customization
algorithms, and mediate the communication between
external components and the objects that reside in the
RTSolution Layer. Finally, the RTObject Store serves
as a repository of different data (e.g. deadlines,
resource usage) concerning the objects of the
RTSolution Layer.

5. The RTSolution Layer

This RTSolution Layer consists of objects or
subcomponents that actually implement the services
as published in the IRTService interface. If the
component is atomic, then this layer consists of only
objects. On the other hand, if the component is
composite, then two or more subcomponents reside in
this layer. The communication among the
subcomponents is accomplished through one or more
connectors using the role-embedding procedure.
More information about subcomponents, connectors,
and the role-embedding procedure can be found in
[6].

The interactions between the RTManagement and the
RTSolution layers follow three rules:

(a) All incoming service invocations must go
through the path: IRTService -> RTDispatcher -> Soc,
where Soc is the object or subcomponent primarily
responsible for providing the corresponding service.

(b) All events (including exceptions) generated in
the RTSolution Layer must be either handled in the
RTSolution Layer or be propagated outside the
component through the RTMediator object.

(c) The RTArbitrator, the RTDispatcher, and the
RTCore must communicate with the objects of the
RTSolution Layer in a mutually exclusive fashion.

6. CPS Customization of Candidate Components

As described in Section 4, the RTCustomizePriority
method of the IRTCustomize interface takes a set of
input parameters to customize the priority of the
internal tasks. The activity essentially corresponds to
the adjustments of the priorities of the objects by
considering inter-object invocation and
synchronization. We first outline the actual
procedure, and then briefly elaborate some of the
non-obvious steps in a slightly detailed manner. The

steps are initiated during component integration when
the RTCustomizePriority method is invoked:

1) Generate the invocation-graphs (IG) of the

objects or subcomponents, which reside in the
RTSolution Layer.

2) Bind each IG with an ASTc.
3) Label each IG with the priority of the ASTc.
4) Identify any potential priority-conflict (PoC).
5) For each PoC identified at 4), resolve the

problem by appropriately configuring the
RTMonitor objects.

Generation of IG: Each IG captures the invocation
sequence and synchronization constraints of the
interaction among the objects in the RTSolution
Layer as a result of an incoming method invocation.
It can be generated by constructing the transitive
closure for each service invocation inside the
component. Each closure is saved into a separate IG.
IGs need to be generated anew during component
integration, since during integration a candidate
component may connect to different external
components and the topologies of the IGs may vary
depending on the IGs of the external components.

Binding and Labeling of IG: In these phases, each
IG is associated with one or more system tasks that
are mapped to the services as specified by the
mapping relation. For each mapping, the entire IG is
then labeled with the corresponding priority of the
system task. If multiple system tasks map to the same
IG, multiple labeling is performed. The priorities of
the labeled IGs then become the priorities of the
corresponding object inside the RTSolution Layer.

Detection of Priority Conflicts: We consider a
component conflict-safe if it is not guaranteed to
violate the priority semantics of the system tasks. The
necessary condition for this to be true is that each IG
is mutually disjoint with each other. The necessary
condition is extended for IGs when multiple system
tasks are assigned to the same IG. The extra
condition states that each labeled priority of an IG
must be equal to each other.

Quite clearly, if the necessary condition is not met,
there is a possibility that priorities of two system
tasks will not be honored inside the component
during runtime. The situation is referred to as
priority-conflict (PoC). Figure 2 shows three system
tasks t1, t2, and t3 with priorities p1, p2, and p3 (p1 > p2, >
p3) and their mappings into the corresponding IGs.
Figure 2(a) shows a component C1 in which a PoC
exists since two IGs use the common object (painted
black in the figure). Figure 2(b) illustrates another

C1

t1, p1

t2, p2

t3, p3

(a)

C2

t1,p1 t2, p2

(b)

C3

t1, p1
t2, p2 t3, p3

(c)

Figure 2: (a) A component with priority-conflict due
to intersecting IGs, (b) A component with priority-
conflict due to common mapping, (c) A component
with no priority-conflict

case of PoC where in component C2 the IGs are
mutually disjoint, but multiple system tasks with
different priorities are assigned to the same IG (i.e.
the same method of the IRTService interface).
Finally, Figure 2(c) shows a component that is
conflict-safe for the particular target architecture.

The presence of a PoC may lead to a problem similar
to priority inversion [8]. One possible approach is to
detect such a problem early and label one of the
conflicting IGs with higher priorities. This solution
violates the semantics of the task priorities of the
target architecture and may cause inefficiency if the
corresponding system task has quite a large period.

PoC Conflict Resolution: To resolve the conflict, an
RTMonitor is assigned by the RTDispatcher to
perform the following runtime actions:

a. In case of aperiodic tasks, when a conflicting task
needs to be performed, the state of the conflicting
object is saved before initiating the task inside the
component. If another conflicting task with the
higher priority arrives, then a new instance of the
conflicting object is used. The new instance will be
initialized with the saved state.

b. If the system tasks are periodic, then at the
beginning of each period, a new instance of the
conflicting object is activated using an RTMonitor
object.

After the scheme is followed, the candidate
component becomes customized for a particular
distributed real-time architecture. If the component is
reused in a different architecture, then the same
procedure needs to be applied to adjust the internal
priorities of the component.

7. CEH Customization of Candidate Components
The current component specifications, such as
CORBA, allow specification of exception associated
with an object interface. When such an exception is
raised, it must be caught by either an external
exception handler or the underlying environment. In
case of component-based software, it should be noted
that the system architecture itself might have some
exceptional conditions, which should be detected and
handled in a prioritized manner at the component
level. Since a component may be reused in different
real-time applications, the definition of exceptional
conditions and the corresponding handling policies
will vary. Accordingly, a real-time component must
customize itself to preserve the semantics the
exception handling of the target system architecture.

The RTCustomizeException method takes declarative
specifications of the exceptional conditions of the
target architecture. The actual customization is
achieved using the following procedure:

a) Identify the exceptional conditions that involve
the ASTc of the candidate component. Even though
there may be several exceptions in the architecture, a
component only needs to concern itself with the ones
that depend on its services.
b) Use deduction algorithms [9] and the IGs to
identify the root conditions that will potentially lead
to the exceptions, as identified in Step a).
c) Assign an RTMonitor object to monitor and
detect such conditions.
d) Invoke either a system-provided handler or an
internal handler (if available) to catch the exceptions.
e) If an internal handler is used, adjust its priority
as specified in the RTCustomizeException method.

This scheme customizes the exception detection and
handling policy of a component based on the target
architecture. Installation of a system-provided
handler is done through the IRTCustomize interface.

Exception
Handler 3

Exception
Handler 1

CEP

O2

O4 O5

O1

RTDispatcher

O3

Exception
Handler 2

IRTOutgoing
IRTService

t1

t2

t3

Figure 3: Component CEP

If the monitor identifies an exceptional condition,
then the external handler is invoked. In this case, the
underlying environment must guarantee that the
external handler operates with the desirable priority.

8. An Example

In this section, we illustrate the use of real-time
component framework and the CPS customization
through an example. The example is adapted from
[6], in which we illustrated the development of a
distributed network management software system
(DNM) by integrating several distributed
components, which are generated based on the
framework. In this section, we extend the original
example to include some real-time requirements, and
show how a specific candidate component in DNM
uses its built-in customization facilities to make itself
compatible with the target architecture.

The main operation of a DNM is to monitor a set of
network elements (NE), such as routers and gateways.
The NEs generate different events that must be
acknowledged and handled properly to keep the
network free of congestion, or connected all the time.
The requirements include concurrent and prioritized
processing of events, separation of event handlers
from the status monitors, fast propagation of event-
processing status, and others. The additional real-
time requirements are:

a) Each NE generates three different aperiodic events,
which must be handled in a prioritized fashion. Let ti

be the system task that needs to respond to event ei.
Let pi be the specified priority of ti. Thus, the set of
all tasks, S* = [t1, t2, t3]. Let p1, p2, and p3 be the
priority of tasks t1, t2, and t3 respectively. Also, let p1
= 3, p2 = 2, p3 = 1 (1 being the lowest priority).
b) Let di be the deadline of ti. Also let, d1 = 5 sec, d2 =
5 sec, d3 = 3 sec.
c) Let sti and fti be the start time and the finish time of
task ti. Moreover, the exceptional conditions are, [ft1 –
st1 > 1 sec], [ft2 – st2 > 0.5 sec], [ft3 – st3 > 1.5 sec].
The system will provide handlers for each exception.

Based on the requirements, three different
components are chosen: Event Dispatcher (CED),
Event Processor (CEP), and Monitor (CM). CEDs
are installed on the NEs. They monitor the associated
devices, generate, and dispatch the specified events to
the CEP component. The CEP is responsible for
processing the events, and forwarding the status to
the CM component. The CM is responsible for
providing GUI interface to present different
information, such as the number of pending events
and percentage of deadlines missed.

In this case, the CEP component is the most
important of all, since it will be responsible for
implementing the system tasks t1, t2, and t3. Figure 3
shows the CEP component, its internal objects,
(which will be hidden in the actual case), and
mapping of the tasks t1, t2, and t3 to the IRTService
interface. The component is also connected with
three external exception handlers, which are activated
when any deadline is missed. The RTSolution Layer
of the CEP component consists of objects O1, O2, O3,
O4, and O5. O1, O2, and O3 implement the tasks t1, t2,
and t3 respectively.

During component integration, when the
RTCustomizePriority method is invoked, the
following operations will be performed:

--IG Generation: IG1, IG2, and IG3 will be
generated, since only O1, O2, and O3 directly
implement the methods published in the IRTService.

--Binding and Labeling of IG: IG1, IG2, and IG3 are
bound to tasks t1, t2, and t3. As a result, all the nodes
will be labeled with the priority of the corresponding
task. Figure 4 shows the priorities of the invocation
graphs.

--PoC Conflict Detection and Resolution: A
priority-conflict exists since both O1 and O2
transitively use O4 to perform their respective

Figure 4: Labeled IGs of Component CEP
with a priority conflict in O4

IG3 IG2 IG1

O3

O5

O4

O1
3

3

3

1

2

t3 t2 t1

O4

O2
2

functionality. The conflict will become evident when
t2 is being serviced by O2, and t1 arises short after.
Now t1 must be handled by O1, O5, and O4 with a
priority = 3. However, since t2 is being serviced, O4 is
executed with the priority = 2. To resolve this, two

instances of O4 will be used. Whenever t2 arrives, the
state of O4 will be saved. If t1 arrives (which has a
higher priority) while t2 is being serviced, then the
second instance will be started with the cached copy
of the state.

9. Implementation
The design of RCF is independent of any specific
middleware technology. However, we have used
COM during implementation due to its availability.
The incorporation of the runtime timers and the
deduction algorithms inside the framework are
currently being implemented. Support for
communication is achieved through both DCOM and
WinSock2 library. We use WinSock2 library to
access the underlying Quality of Service (QoS) of a
650-mb/sec Fujitsu ATM network. We also plan to
use VxWorks when a compatible COM runtime
environment becomes available. A CORBA-
compliant implementation is also possible although it
is our plan to wait for a commercial implementation
of Real-time CORBA.

10. Discussion
A real-time component framework is presented to
facilitate customization during component
integration. The framework uses a layered
architecture to separate the common services of a
component from the implementation of its published
services. Two built-in schemes are presented that
perform customization of a component based on the
requirements of the target software.

Future work includes the capability of customizing
fault-tolerance into our component framework. We
plan to relate the customization algorithms with
compatibility checking methods to make the
component integration process more systematic and
coherent. A successful integration often depends on
the availability of a precise specification of the target
architecture. Although several Architecture
Description Languages (ADL) [10] exist today, they
are not suitable to express the complexity and the
semantics (e.g. exception handling policy) of a
distributed real-time architecture. Thus, it is also our
plan to derive a new ADL for specifying distributed
real-time software systems.

References:
[1] S. Yau and B. Xia, "An Approach to Distributed
Component-based Real-time Application Software
Development", Proc. 1st IEEE Int’l Symp. Object-
oriented Real-time Distributed Computing (ISORC
98), April 1998, pp. 275-283.
[2] S. Yau and B. Xia, “Object-Oriented Distributed
Component Software Development Based on
CORBA”, Proc. 22nd Int’l Computer Software and
Applications Conf. (COMPSAC 98), August 1998,
pp. 246-251.
[3] C. Gill, et al., “Applying Adaptive Real-time
Middleware to Address Grand Challenges of COTS-
based Mission-Critical Real-time Systems”, Proc. 1st
Int’l Workshop on Real-time Mission-Critical
Systems: Grand Challenge Problems, Phoenix, USA,
November 1999.
[4] Object Management Group, “Real-time CORBA
FTF”, OMG TC Work in Progress, November 1999.
[5] D. Garlan, et al., “Architectural Mismatch: Why
Reuse Is So Hard”, IEEE Software, Vol. 12, No. 6,
November 1995, pp. 17-26.
[6] S. Yau and F. Karim, “Integration of Object-
Oriented Software Components for Distributed
Application Software Development”, Proc. 7th IEEE
Workshop on Future Trends of Distributed
Computing Systems, December 1999, pp. 111-116.
[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.
[8] L. Sha, R. Rajkumar, and J. Lehoczky, "Priority
Inheritance Protocols: An Approach to Real-Time
Synchronization". IEEE Trans. on Computers,
September 1990, pp. 1175-1185.
[9] J. Goubault-Larrecq, Proof Theory and
Automated Deduction, Kluwer Publishers, 1997.
[10] N. Medvidovic and R. Taylor, “A Framework
for Classifying and Comparing Architecture
Description Languages”, Proc. 6th European
Software Engineering Conference, 1997, pp. 60-76.

