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Abstract 
To apply the component-based approach to 
distributed real-time software development, it is 
necessary to identify components based on both 
functional and real-time requirements. Since a 
component may be acquired from external sources, it 
becomes necessary during integration to ensure that 
a component satisfies the real-time requirements of 
the target application software. Since these 
requirements vary, a component should be 
customizable so that during integration it can adapt 
itself to the specific real-time requirements of the 
target-distributed software. To facilitate such 
activities, it is preferable to have components that are 
capable of performing self-customization using a set 
of built-in services. In this paper, an object-oriented 
real-time component framework and two built-in 
customization services are presented to address the 
specified issues. 

 
Keywords: Component-based distributed software, 
integration, customization, real-time, object-oriented 
component framework, built-in services 
 
1. Introduction 
 
In component-based software development (CBSD) 
approach [1,2], components can be acquired from 
various sources with possible customization to fit 
specific requirements, and then be integrated to build 
the application software. Currently, the availability of 
standardized middleware and component models, 
such as CORBA, COM, etc. facilitate the 
development of object-oriented distributed software 
in a heterogeneous environment. However, current 
middleware has serious limitations with respect to 
object-oriented real-time distributed software 
development [1-4].  
 
Integration in component-based software 
development is a difficult task due to many 

incompatibilities that arise during integration [5], 
especially in case of distributed real-time software 
development due to the issues related to different 
non-functional requirements (e.g., difference in the 
deadlines, event-handling, synchronization, and 
resource requirements, etc.) in addition to the 
functional requirements of the target application 
software. Before the actual integration is performed, 
it is important to guarantee that the constructed 
software will satisfy the specified real-time 
requirements. On the other hand, it is also desirable 
that a component is reusable in different distributed 
real-time software systems. To address both issues, a 
component should be customizable during integration 
to fit itself into specific real-time requirements. 
Based on this perspective, it is obvious that 
component customization is a necessary activity in 
the overall integration process, not an optional one, 
and that components need to have a set of specific 
built-in services to facilitate customization. In this 
paper, we will present a framework and associated 
built-in customization processes to facilitate the 
integration in object-oriented distributed real-time 
software development. Our approach to component 
customization during integration fits seamlessly with 
an integration process, such as the ones described in 
[1,6]. 
 
2. Our Approach 
Since the customization process is a part of our 
overall component integration process, we need to 
discuss it briefly. The integration process is general 
in the sense that it can be applied to both real-time 
and non real-time distributed software development. 
Moreover, a principal goal of designing the 
integration process is to make it independent of any 
specific middleware implementation or system 
architecture. Our integration approach can be 
summarized in the following steps: 
 
1) Specify the target architecture, including its real-

time requirements, such as task frequency, 
priorities, and deadlines, etc. 



2) Partition the specification from 1) into smaller 
parts based on the nature of the collaborations 
among the components of the target architecture. 

3) For each sub-specification in the partitioned 
specification from 2), choose a candidate 
component based on the desired functionality. 

4) Perform the compatibility check of the candidate 
components based on the specification. 

5) Based on the results from 4), customize the 
candidate components to make them compatible 
with the target architecture. 

6) Integrate the customized components using 
Distributed Connectors (DC) [6] to generate the 
distributed real-time software. 

 
The component customization process corresponds to 
Step 5) of our integration approach. In this paper, we 
will focus our discussion on two specific aspects of 
component customization: task-priority of the target 
architecture, and exception handling policy of the 
target architecture.  The overall customization 
approach related to these two aspects can be outlined 
as follows: 
 
5.1) The Assigned System Tasks (ASTc) based on the 
requirements of the target architecture is supplied to 
the candidate component. An ASTc t of a component 
c means that t has been identified as a required task in 
the target architecture (to satisfy a specific 
requirement), and c has been chosen to provide the 
functionality for t.  
 
5.2) The specification of the exceptional conditions 
and the corresponding exception handling policy of 
the target architecture are supplied to the component. 
 
5.3) The ASTcs from Step 5.1) are mapped onto the 
internal tasks of the component. The internal tasks 
are used to implement the services published by the 
component. 
 
5.4) The priority of the internal tasks of the candidate 
component is adjusted and their invocation sequences 
are configured based on the results from Step 5.3). If 
a conflict occurs, then a runtime-monitoring scheme 
is used to resolve the conflict.  
 
5.5) Based on the information from Step 5.2), the 
internal events, which may potentially lead to 
exceptional conditions, are monitored inside the 
component. If such a condition arises, it is handled 
according to the specification from Step 5.2).  
 
At the end of Steps 5.4) and 5.5) a candidate 
component is customized based on the task priority 
and the exceptional conditions of the target 

architecture respectively. In the remainder of the 
paper, these customization processes will be denoted 
as CPS and CEH respectively.   
 
We will present in Section 3 an object-oriented real-
time component framework for facilitating 
component customization. In Sections 4 and 5, we 
will describe the layered architecture of the 
framework. Both CPS and CEH customizations will 
be discussed in Sections 6 and 7. An example will be 
presented in Section 8 to illustrate the use of the 
component framework and the CPS customization in 
developing component-based distributed real-time 
network management software. We will discuss the 
implementation issues in Section 9. 
 
3. Real-time Component Framework 
 
To facilitate customization, candidate components 
should have some specific built-in services that can 
be systematically used during component integration.  
These built-in services also need to be published by 
the components so that an integration tool [1,2] can 
easily identify if a candidate component has the 
capability to customize itself. To address these issues, 
the following desirable properties of a component has 
been identified:  
 
a. Appropriate interface for specifying the latency 
and the required resources for each published service.   
b. Support for easy identification of the outgoing 
events generated by the component. The interface 
must also publish the nature of the event generation 
(e.g. periodic or aperiodic). 
c. Built-in services for performing schedulability 
analysis to identify self-compatibility based on the 
target architecture.  
d. Necessary implementation to enforce the 
consistency of priorities of the internal tasks with that 
of the target architecture.  
e. Suitable support for handling different types of 
exceptional conditions as specified by the 
requirements.  

Among these properties, the first two are the most 
fundamental for component to be used in a 
distributed real-time software. The information 
presented in the interface is necessary for 
determining if a component can meet the minimum 
timing requirements. Properties c, d, and e essentially 
correspond to a component’s ability to identify if it is 
suitable to be used in a specific distributed real-time 
software system. In particular, the requirements 
specified in properties d and e are important since the 
semantics of the target architecture should be 



Figure 1: A Simplified View of the Real-time Component Framework (RCF) 
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preserved inside the component to guarantee the real-
time requirements of the target software.  

Based on the above discussion, we will present an 
object-oriented real-time component framework to 
satisfy the specified properties. The key difference 
between our framework and the concept of a 
framework in general is discussed in [6].  
 
A Real-time Component Framework (RCF) is a 
specialized Distributed Component Framework 
(DCF) [6]. An RCF serves as a reusable architecture 
of a distributed real-time component, and implements 
a set of common services for facilitating various 
activities related to component integration and 
customization. An RCF can be used as a reference to 
generate suitable components for distributed real-
time software development.  
 
Just as a DCF, an RCF separates the run-time 
operations (i.e. service invocations) of a component 
from its integration and maintenance-time operations 
(i.e. schedulability analysis, customization, extension 
of functionality, etc.) by distributing them over 
several interfaces.  The framework uses a layered 
architecture to isolate the implementation of the 
common services from that of its run-time services, 
which usually are different depending on the 
functionality of the component. An RCF can be used 
to generate both atomic and composite [6] 
components to address hierarchical composition of 
complex components from simpler ones. It provides 

an architecture-query mechanism to automatically 
generate information about a component’s internal 
structure to facilitate extension of functionality 
during runtime. 
 
As shown in Figure 1, the RTManagement Layer and 
the RTSolution Layer constitute the layered 
architecture of the framework. They are described in 
Sections 4 and 5 respectively. 
 
4.    The RTManagement Layer 
 
The RTManagement Layer is primarily responsible 
for the following operations:  
 
� Implement the common interfaces of a real-time 
component (described later). 
� Forward externally generated service invocations 
to the appropriate objects or subcomponents [6]. 
� Manage references and other design-time 
information about the objects or subcomponents and 
connectors that reside in the RTSolution Layer. 
� Implement several compatibility checking 
algorithms to identify the suitability of the 
component for use in a specific target architecture. 
� Implement the necessary customization 
algorithms and apply them during integration.  

 
An important part of RCF is its interfaces, which 
form the basis of a successful integration process. 
They are briefly described below. 
 



a) IRTService: The IRTService interface publishes 
the services of the associated real-time component, 
which is generated by instantiating the framework. 
The services are declared in the following way: 
 

[ssi, rti, [re
1

i, rc
1

i], [re
2

i, rc
2

i], … [req
i, rcfqi]], 

where   
ssi = the method signature of the ith service,  
rti = the logical response time of the service, 
rej

i = the jth resource required by method ssi, 
rcfki = the consumption function for the jth resource as 
required by method ssi. 
 
b) IRTCompatible: This interface takes the 
specification of the target real-time architecture [6]. 
The specification is derived in Step 2) of our 
integration approach, which is presented in Section 2. 
The interface provides separate methods for 
performing different types of compatibility checks. 
 
c) IRTCustomize: The IRTCustomize interface is 
responsible for two services. It publishes one or more 
plug-in interfaces of the associated real-time 
component. The plug-in interfaces are used to publish 
services that are required by the component from its 
underlying environment or from external 
components. Moreover, the interface publishes two 
methods – RTCustomizePriority and 
RTCustomizeException to perform the CPS and CEH 
customizations as introduced in Section 2. 
 
RTCustomizePriority: This method is used to 
perform the CPS customization. Among other input 
parameters, it requires the following data during its 
invocation: 
 
a) A set of ASTc, ST:  [t1, t2,  … tn], where ST ⊆ S*, 

and S* is the set of all tasks identified in the 
system architecture.  

b) A set of tasks with their priority and their 
deadlines, SPT: [[p1, d1], [p2, d2], [pn, dn] … [pn, 
dn]], where pi is the priority and di is the deadline 
of task ti, and ti ∈ ST. 

c) A set of task frequency, SPD: [[fp1, fr1], … [fpn, 

frn]], where fpi is the flag indicating if task ti is 
periodic or aperiodic, and fri is the frequency of 
task ti. 

d) A set of task mapping relations Smr:  [[t1, ssi], [t2, 
ssi+1], … [tn, ssm]], where ti ∈ ST, and ssi is the ith 
service as published in the IRTService interface. 
The relations are used to identify the 
correspondence between an ASTc with the 
method ssi, which is published in the IRTService 
interface of the corresponding component. 

 

RTCustomizeException: This method is used to 
perform the CEH customization. It mainly takes the 
following information as its input parameters –  

[edecli, pfi, pri, aci, rehj] 
where  
edecli = declarative specification of the conditions 
that will lead to exception i, 
pfi = propagation flag for exception i, indicates if the 
exception should be self-contained or propagated, 
pri = the desired priority of the exception handler for 
exception i, 
aci = specification of the action that need to be taken 
if the exception is self-contained, 
rehj =  reference to a system-specific exception 
handler that need to be invoked when the exception 
occurs. 
 
� IRTManage: It is mainly responsible for 
providing the Architectural Reflection (AR) service, 
which provides hierarchical query facilities to extend 
the functionality of a composite component in a 
distributed environment. Conceptually, the AR 
service can be thought of as a mechanism to 
systematically opening up a composite component in 
order to peek its inside.  Any reconfiguration can be 
accomplished (after peeking into it) through the 
Architectural Modification (AM) service. These 
mechanisms can be used to remotely extend the 
functionality of a real-time component without 
shutting it down.  
 
d) IRTOutgoing: In addition to specifying the 
services that a real-time component requires from its 
underlying environment, it publishes the internally 
generated outgoing events in the following way:  

[ei, fi, phi, expi],  
where ei = the id of the ith event,  
fi = the frequency of ei,  
phi = period of ei, if applicable,  
expi = a flag indicating if ei needs to be caught 
externally. 
 
The data published in this interface is used mainly in 
two ways – to facilitate schedulability analysis during 
component integration, and to connect the candidate 
component with another component, a connector, or 
an adapter [1,2] that is interested in the published 
events. 
 
As shown in Figure 1, the objects of the 
RTManagement Layer implement the described 
interfaces. The RTDispatcher object is actually a 
Façade [7], which connects the IRTService interface 
and the objects that implement the services of the 
component. It also invokes a set of RTMonitor 
objects, which are used to monitor the tasks in the 



RTSolution Layer. The RTArbitrator implements the 
IRTCompatible interface and the compatibility 
checking algorithms. RTCore, on the other hand, 
provides both AR and AM services. The RTMediator 
object implements different customization 
algorithms, and mediate the communication between 
external components and the objects that reside in the 
RTSolution Layer. Finally, the RTObject Store serves 
as a repository of different data (e.g. deadlines, 
resource usage) concerning the objects of the 
RTSolution Layer.  
 
5.    The RTSolution Layer 
 
This RTSolution Layer consists of objects or 
subcomponents that actually implement the services 
as published in the IRTService interface. If the 
component is atomic, then this layer consists of only 
objects. On the other hand, if the component is 
composite, then two or more subcomponents reside in 
this layer. The communication among the 
subcomponents is accomplished through one or more 
connectors using the role-embedding procedure. 
More information about subcomponents, connectors, 
and the role-embedding procedure can be found in 
[6]. 
 
The interactions between the RTManagement and the 
RTSolution layers follow three rules: 
 
(a) All incoming service invocations must go 
through the path:  IRTService -> RTDispatcher -> Soc, 
where Soc is the object or subcomponent primarily 
responsible for providing the corresponding service. 
 
(b) All events (including exceptions) generated in 
the RTSolution Layer must be either handled in the 
RTSolution Layer or be propagated outside the 
component through the RTMediator object. 
 
(c) The RTArbitrator, the RTDispatcher, and the 
RTCore must communicate with the objects of the 
RTSolution Layer in a mutually exclusive fashion. 
 
6.    CPS Customization of Candidate Components 
 
As described in Section 4, the RTCustomizePriority 
method of the IRTCustomize interface takes a set of 
input parameters to customize the priority of the 
internal tasks. The activity essentially corresponds to 
the adjustments of the priorities of the objects by 
considering inter-object invocation and 
synchronization. We first outline the actual 
procedure, and then briefly elaborate some of the 
non-obvious steps in a slightly detailed manner. The 

steps are initiated during component integration when 
the RTCustomizePriority method is invoked: 
 
1) Generate the invocation-graphs (IG) of the 

objects or subcomponents, which reside in the 
RTSolution Layer. 

2) Bind each IG with an ASTc. 
3) Label each IG with the priority of the ASTc. 
4) Identify any potential priority-conflict (PoC).  
5) For each PoC identified at 4), resolve the 

problem by appropriately configuring the 
RTMonitor objects.  

 
Generation of IG: Each IG captures the invocation 
sequence and synchronization constraints of the 
interaction among the objects in the RTSolution 
Layer as a result of an incoming method invocation. 
It can be generated by constructing the transitive 
closure for each service invocation inside the 
component. Each closure is saved into a separate IG. 
IGs need to be generated anew during component 
integration, since during integration a candidate 
component may connect to different external 
components and the topologies of the IGs may vary 
depending on the IGs of the external components. 
 
Binding and Labeling of IG: In these phases, each 
IG is associated with one or more system tasks that 
are mapped to the services as specified by the 
mapping relation. For each mapping, the entire IG is 
then labeled with the corresponding priority of the 
system task. If multiple system tasks map to the same 
IG, multiple labeling is performed. The priorities of 
the labeled IGs then become the priorities of the 
corresponding object inside the RTSolution Layer. 
 
Detection of Priority Conflicts: We consider a 
component conflict-safe if it is not guaranteed to 
violate the priority semantics of the system tasks. The 
necessary condition for this to be true is that each IG 
is mutually disjoint with each other. The necessary 
condition is extended for IGs when multiple system 
tasks are assigned to the same IG. The extra 
condition states that each labeled priority of an IG 
must be equal to each other. 
 
Quite clearly, if the necessary condition is not met, 
there is a possibility that priorities of two system 
tasks will not be honored inside the component 
during runtime. The situation is referred to as 
priority-conflict (PoC). Figure 2 shows three system 
tasks t1, t2, and t3 with priorities p1, p2, and p3 (p1 > p2, > 
p3) and their mappings into the corresponding IGs. 
Figure 2(a) shows a component C1 in which a PoC 
exists since two IGs use the common object (painted 
black in the figure). Figure 2(b) illustrates another 
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Figure 2: (a) A component with priority-conflict due 
to intersecting IGs, (b) A component with priority-
conflict due to common mapping, (c) A component 
with no priority-conflict 

case of PoC where in component C2 the IGs are 
mutually disjoint, but multiple system tasks with 
different priorities are assigned to the same IG (i.e. 
the same method of the IRTService interface). 
Finally, Figure 2(c) shows a component that is 
conflict-safe for the particular target architecture. 
 
The presence of a PoC may lead to a problem similar 
to priority inversion [8]. One possible approach is to 
detect such a problem early and label one of the 
conflicting IGs with higher priorities. This solution 
violates the semantics of the task priorities of the 
target architecture and may cause inefficiency if the 
corresponding system task has quite a large period. 
 
PoC Conflict Resolution: To resolve the conflict, an 
RTMonitor is assigned by the RTDispatcher to 
perform the following runtime actions: 
 
a. In case of aperiodic tasks, when a conflicting task 
needs to be performed, the state of the conflicting 
object is saved before initiating the task inside the 
component. If another conflicting task with the 
higher priority arrives, then a new instance of the 
conflicting object is used. The new instance will be 
initialized with the saved state.  
 
b. If the system tasks are periodic, then at the 
beginning of each period, a new instance of the 
conflicting object is activated using an RTMonitor 
object.  
 
After the scheme is followed, the candidate 
component becomes customized for a particular 
distributed real-time architecture. If the component is 
reused in a different architecture, then the same 
procedure needs to be applied to adjust the internal 
priorities of the component.  
 
7.  CEH Customization of Candidate Components 
The current component specifications, such as 
CORBA, allow specification of exception associated 
with an object interface. When such an exception is 
raised, it must be caught by either an external 
exception handler or the underlying environment. In 
case of component-based software, it should be noted 
that the system architecture itself might have some 
exceptional conditions, which should be detected and 
handled in a prioritized manner at the component 
level. Since a component may be reused in different 
real-time applications, the definition of exceptional 
conditions and the corresponding handling policies 
will vary. Accordingly, a real-time component must 
customize itself to preserve the semantics the 
exception handling of the target system architecture.  
 

The RTCustomizeException method takes declarative 
specifications of the exceptional conditions of the 
target architecture. The actual customization is 
achieved using the following procedure: 

 
a) Identify the exceptional conditions that involve 
the ASTc of the candidate component. Even though 
there may be several exceptions in the architecture, a 
component only needs to concern itself with the ones 
that depend on its services. 
b) Use deduction algorithms [9] and the IGs to 
identify the root conditions that will potentially lead 
to the exceptions, as identified in Step a). 
c) Assign an RTMonitor object to monitor and 
detect such conditions. 
d) Invoke either a system-provided handler or an 
internal handler (if available) to catch the exceptions. 
e) If an internal handler is used, adjust its priority 
as specified in the RTCustomizeException method. 
 
This scheme customizes the exception detection and 
handling policy of a component based on the target 
architecture. Installation of a system-provided 
handler is done through the IRTCustomize interface. 
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If the monitor identifies an exceptional condition, 
then the external handler is invoked. In this case, the 
underlying environment must guarantee that the 
external handler operates with the desirable priority. 
 
8.   An Example 
 
In this section, we illustrate the use of real-time 
component framework and the CPS customization 
through an example. The example is adapted from 
[6], in which we illustrated the development of a 
distributed network management software system 
(DNM) by integrating several distributed 
components, which are generated based on the 
framework. In this section, we extend the original 
example to include some real-time requirements, and 
show how a specific candidate component in DNM 
uses its built-in customization facilities to make itself 
compatible with the target architecture.  
 
The main operation of a DNM is to monitor a set of 
network elements (NE), such as routers and gateways. 
The NEs generate different events that must be 
acknowledged and handled properly to keep the 
network free of congestion, or connected all the time. 
The requirements include concurrent and prioritized 
processing of events, separation of event handlers 
from the status monitors, fast propagation of event-
processing status, and others. The additional real-
time requirements are: 
 
a) Each NE generates three different aperiodic events, 
which must be handled in a prioritized fashion. Let ti 

be the system task that needs to respond to event ei. 
Let pi be the specified priority of ti. Thus, the set of 
all tasks, S* = [t1, t2, t3]. Let p1, p2, and p3 be the 
priority of tasks t1, t2, and t3 respectively. Also, let p1 
= 3, p2 = 2, p3 = 1 (1 being the lowest priority). 
b) Let di be the deadline of ti. Also let, d1 = 5 sec, d2 = 
5 sec, d3 = 3 sec. 
c) Let sti and fti be the start time and the finish time of 
task ti. Moreover, the exceptional conditions are, [ft1 – 
st1 > 1 sec], [ft2 – st2 > 0.5 sec], [ft3 – st3 > 1.5 sec]. 
The system will provide handlers for each exception. 
  
Based on the requirements, three different 
components are chosen:  Event Dispatcher (CED), 
Event Processor (CEP), and Monitor (CM). CEDs 
are installed on the NEs. They monitor the associated 
devices, generate, and dispatch the specified events to 
the CEP component. The CEP is responsible for 
processing the events, and forwarding the status to 
the CM component. The CM is responsible for 
providing GUI interface to present different 
information, such as the number of pending events 
and percentage of deadlines missed.  

In this case, the CEP component is the most 
important of all, since it will be responsible for 
implementing the system tasks t1, t2, and t3. Figure 3 
shows the CEP component, its internal objects, 
(which will be hidden in the actual case), and 
mapping of the tasks t1, t2, and t3 to the IRTService 
interface. The component is also connected with 
three external exception handlers, which are activated 
when any deadline is missed. The RTSolution Layer 
of the CEP component consists of objects O1, O2, O3, 
O4, and O5. O1, O2, and O3 implement the tasks t1, t2, 
and t3 respectively.  
 
During component integration, when the 
RTCustomizePriority method is invoked, the 
following operations will be performed: 

 
--IG Generation: IG1, IG2, and IG3 will be 
generated, since only O1, O2, and O3 directly 
implement the methods published in the IRTService. 
 
--Binding and Labeling of IG: IG1, IG2, and IG3 are 
bound to tasks t1, t2, and t3. As a result, all the nodes 
will be labeled with the priority of the corresponding 
task. Figure 4 shows the priorities of the invocation 
graphs.  
 
--PoC Conflict Detection and Resolution: A 
priority-conflict exists since both O1 and O2 
transitively use O4 to perform their respective 



Figure 4: Labeled IGs of Component CEP 
with a priority conflict in O4 
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functionality. The conflict will become evident when 
t2 is being serviced by O2, and t1 arises short after. 
Now t1 must be handled by O1, O5, and O4 with a 
priority = 3. However, since t2 is being serviced, O4 is 
executed with the priority = 2. To resolve this, two 

instances of O4 will be used. Whenever t2 arrives, the 
state of O4 will be saved. If t1 arrives (which has a 
higher priority) while t2 is being serviced, then the 
second instance will be started with the cached copy 
of the state.  
 
9. Implementation  
The design of RCF is independent of any specific 
middleware technology. However, we have used 
COM during implementation due to its availability. 
The incorporation of the runtime timers and the 
deduction algorithms inside the framework are 
currently being implemented. Support for 
communication is achieved through both DCOM and 
WinSock2 library. We use WinSock2 library to 
access the underlying Quality of Service (QoS) of a 
650-mb/sec Fujitsu ATM network. We also plan to 
use VxWorks when a compatible COM runtime 
environment becomes available. A CORBA-
compliant implementation is also possible although it 
is our plan to wait for a commercial implementation 
of Real-time CORBA. 
 
10.  Discussion 
A real-time component framework is presented to 
facilitate customization during component 
integration. The framework uses a layered 
architecture to separate the common services of a 
component from the implementation of its published 
services. Two built-in schemes are presented that 
perform customization of a component based on the 
requirements of the target software.  
 

Future work includes the capability of customizing 
fault-tolerance into our component framework. We 
plan to relate the customization algorithms with 
compatibility checking methods to make the 
component integration process more systematic and 
coherent.  A successful integration often depends on 
the availability of a precise specification of the target 
architecture. Although several Architecture 
Description Languages (ADL) [10] exist today, they 
are not suitable to express the complexity and the 
semantics (e.g. exception handling policy) of a 
distributed real-time architecture. Thus, it is also our 
plan to derive a new ADL for specifying distributed 
real-time software systems. 
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