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Abstract 
 

Situation awareness is one of the most fundamental 
features of entities in pervasive computing 
environments to dynamically adapt their behavior to 
situation changes to satisfy user requirements, 
including security and privacy. In order to support 
situation-aware adaptation, it is necessary to model 
and specify context and situation in a way such that 
multiple entities can easily exchange, share and reuse 
their knowledge on context and situation. In this paper, 
an OWL-based situation ontology to model situation 
hierarchically to facilitate sharing and reusing of 
situation knowledge and logic inferences is presented. 
The conversion of OWL situation ontology 
specifications to the First-Order Logic (FOL) 
representations, and the performance of FOL rule-
based reasoning in terms of problem size and time are 
discussed.  
 
Keywords: Situation awareness, situation modeling, 
situation reasoning, pervasive computing, Semantic 
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1. Introduction 
 

In pervasive computing environments, various 
entities are expected to integrate and cooperate 
seamlessly to achieve user objectives in an anywhere-
and-anytime fashion. Situation awareness (SAW) is 
the capability of the entities in pervasive computing 
environments to be aware of situation changes and 
automatically adapt themselves to such changes to 
satisfy user requirements, including security and 
privacy. SAW is one of the most fundamental features 
to support dynamic adaptation of entities in pervasive 
computing environments. A situation is a set of 
contexts in the application over a period of time that 
affects future system behavior. A context is any 
instantaneous, detectable, and relevant property of the 

environment, system, or users, such as location, 
available bandwidth and a user’s schedule [1, 2].  A 
pervasive computing environment involves a set of 
cooperative entities, each of which has related context 
data. In order to support situation-aware adaptation of 
the entities in pervasive computing environments, it is 
necessary to model and specify context and situation in 
a way such that multiple entities can easily exchange, 
share and reuse their knowledge on context and 
situation. 

With recent development of Semantic Web [3], 
ontology has been widely used to facilitate knowledge 
sharing and reusing. For pervasive computing 
environments, using ontology to model context and 
situation enables multiple entities to have common 
understanding of the context and situation during 
collaboration. Web Ontology Language (OWL) [4] is a 
W3C standard for representing machine interpretable 
knowledge in Semantic Web. OWL provides three 
increasingly expressive sublanguages: OWL Lite, OWL 
DL and OWL Full. OWL DL has the maximum 
expressiveness, and is computationally complete and 
decidable. In addition, it supports formal logic 
reasoning [4].  It is called OWL DL due to its 
correspondence with Description Logics (DL).  

In this paper, an OWL-based situation ontology will 
be presented for context and situation knowledge 
modeling. The situation ontology uses OWL DL to 
model context and situation in a hierarchical way such 
that the specifications for context and situation can be 
easily shared and reused among multiple entities. 
Furthermore, the use of OWL DL supports formal 
logical reasoning over the situation ontology for 
consistency checking, subsumption reasoning, implicit 
knowledge inference. We will also discuss the 
conversion of OWL situation ontology specifications 
to the First-Order Logic (FOL) representations and the 
performance of FOL rule-based reasoning in terms of 
problem size and time.  
 



 

2. Current State of the Art 
 

Context modeling for pervasive computing has been 
well studied in recent years. Composite Capabilities / 
Preferences Profile (CC/PP) [5] created by the W3C, 
and User Agent Profile (UAProf) created by the WAP 
Forum [6] and their extensions [7, 8], are Resource 
Description Framework (RDF) based approaches that 
describe the context information related to the mobile 
devices. The Context Broker Architecture (CoBrA) 
system [9] has a set of context entities modeled using 
OWL, and uses broker-centric agent architecture to 
acquire, share, reason and protect context information. 
The Aspect-Scale-Context (ASC) model and Context 
Ontology Language (CoOL) are introduced for context 
modeling and can be used in DAML-S model to 
represent the context information of services in [10]. 
The Context Ontology (CONON) context modeling 
approach [11] models an upper ontology for context 
and uses OWL DL language to represent and reason 
over CONON. These approaches all focus on modeling 
context, which is not sufficient for situation modeling.  

Among the approaches for modeling situation, the 
following are four major ones: In Context Toolkit [12], 
situation is modeled on a system level as the 
aggregation of context, but there is no language level 
situation modeling.  Situation calculus and its 
extensions [13, 14] model situation based on the 
effects of actions and events, and consider situation as 
a complete state of the world.  Hence, situation is not 
fully described. This causes the well-known frame 
problem and ramification problem [13]. A core SAW 
ontology [15] models situation as a collection of Goals, 
SituationObjects and Relations using UML, and can be 
converted to OWL representation. How to model 
context, derive situation based on context and reuse 
simple situation definition to compose complicated 
situation are not considered. A conceptual model for 
context and situation for service-based systems and a 
situation specification example based on the 
conceptual model using F-logic are presented in [16, 
17]. 

 
3 Requirements of Situation Modeling 
 

Pervasive computing environments usually involve 
entities with different platforms connected through 
heterogeneous wired and wireless networks. These 
entities need to interoperate with each other to achieve 
user objectives. To make these entities situation aware 
in such dynamic environments, the situation modeling 
approach must satisfy the following requirements: 

 Machine interpretable: The modeled situation 
knowledge must be easily exchanged among 

various devices across heterogeneous networks.  
Hence, it must be machine-interpretable.  

 Semantic-based: The modeled situation 
knowledge must have well-defined semantics so 
that multiple entities in different environments can 
understand and interoperate with each other 
correctly. 

 Reusable: The modeled situation knowledge 
should be reusable to reduce the information 
needed to be transferred and processed.  

 Extensible: Different pervasive computing systems 
will have different domain specific knowledge. The 
modeling approach must support extension of such 
domain specific knowledge. 

 Logic inference: The modeled situation knowledge 
should support formal logic inference for 
verification and reasoning. 

 
4 OWL-based Situation Ontology  
 

Due to the complexity of pervasive computing 
environments, it is impossible to enumerate all possible 
contexts and situations in a single ontology. Our 
situation ontology only models the upper ontology for 
context and situation by defining a set of core classes 
and relations using OWL DL. For each pervasive 
computing application, specific domain-related 
knowledge can be easily extended. Consider a smart 
conference environment scenario: “If the user is in the 
conference room and the light is on, then the user is 
ready for a meeting”. Complicated situation 
(ReadyForMeeting) is derived from the basic contexts 
(location and light). Based on the conceptual model 
presented in [16, 17], the contexts in our OWL-based 
situation ontology are aggregated as situations and 
complicate situations are composed of simple 
situations in a hierarchical structure to facilitate the 
sharing and reusing of context and situation knowledge 
since the semantics of context/situation specification 
can be clearly understood by all entities in the system. 
The hierarchical structure of situation ontology can be 
roughly divided to two layers: context layer and 
situation layer. By separating context layer and 
situation layer, we separate the context acquisition and 
processing from the situation evaluation, which gives a 
clearer view of SAW and facilitates SAW development 
[12].  

Context layer: Context layer models context 
definition, contextual data of entities and various 
context value domains in an upper ontology with the 
following ontology classes and relations: 

 Context class: The context class is the super class 
for all the contexts in pervasive computing 
environments. Any instance of the context class 



 

represents a conceptual context, such as 
availableBandwidthContext or locationContext. 
Different contexts can be indexed hierarchically 
based on class hierarchy, such as deviceContext, 
environmentContext and userContext in Figure 1. 

 contextData class: An instance of contextData will 
represent a certain context, and have associated 
host ID, timestamp and context value. All the 
contextData instances, which represent the same 
context and have the same host ID, define a 
specific context instance in the system within a 
certain time period. Any Entity in pervasive 
computing system can specify related contextual 
data using property relatedContextData. 

 contextValue class: The actual value of the context 
is modeled by contextValue class. The context 
value in pervasive computing environments can be 
simple, such as the float number temperature value, 
or complicated data structures, like a location 
involving address number, street name, city, state 
and zip code. To support such variation, the 
contextValue class can have multiple subclasses to 
deal with different types of values. User can define 
a complex ontology class streetLocation class as a 
subclass of contextValue class. Simple data types 
like float or Boolean can be wrapped into 
floatValue or booleanValue classes. 

 contextValueDomain class: For each context, the 
valid domain of its value is defined by 
contextValueDomain class with hasDomain 
property. Each contextValue instance also belongs 
to a certain context value domain via inDomain 
property. Multiple context value domains of a 

context corresponding to different context value 
scales. For example, the available-MemoryContext 
may have two context value domains 
corresponding to scales of MB and Bytes. 

 dataContextOperation / booleanContextOperator 
class: The context value interpretation between 
different domains is modeled as dataContext-
Operation. The booleanContextOperor is a special 
type of context value interpretation which returns a 
Boolean value and is used to compose atomic 
situation definition in the situation layer. Each 
booleanContextOperor instance may associate with 
a rdf:Property by the URI of the property, such as 
owl:sameAs or location:sameFloor, 
Situation layer: The situation layer is built on top 

of the context layer to aggregate context into situations 
and to compose complicated situations of simple 
situations via logical composition and temporal 
composition. Whether an entity in a pervasive 
computing environment satisfies a certain situation or 
not is specified via satisfies and notSatisfy properties. 

 Situation class: The Situation class is the super 
class for all the situations in pervasive computing 
environments. Different situations form a hierarchy 
based on their derivation and can be divided to two 
major categories: atomicSituation and 
compositeSituation.  

 atomicSituation class: The atomicSituation class 
represents all the basic situations whose value is 
directly derived from the value of a single 
contextual data with respect to certain operator and 
argument. The situation layer links to the context 
layer with three properties: atomicSituation: 

 
Figure 1. The situation ontology 



 

hasContext, hasBOperator and hasArgument. The 
evaluation of the atomicSituation has the semantic 
of “The atomic situation is satisfied by an entity iff 
the entity has a related contextual data 
representing the context and the Boolean context 
operator over the contextual data value and the 
argument returns true.”  

 compositeSituation class: The compositeSituation 
class represents complicated situations: either the 
logical composition over other situations 
(conjunctionSituation, disjunctionSituation and 
negationSituation), or the temporalSituation whose 
value is derived from the value history of another 
situation. All these four subclasses of 
compositeSituation are disjoint with each other. 
Although supporting all the three types of logical 
composition is redundant, it is more convenient for 
situation specification. A temporalSituation 
instance must have associated temporalOperator, 
such as alwaysTrue or onceTrue, and timePeriod. 
Using the situation ontology, the above-mentioned 

smart conference scenario can be specified as 
“situation ReadyForMeeting is the conjunction of two 
atomic situations InConferenceRoom and LightOn”, 
where InConferenceRoom situation is “the location-
Context value is same as crLocation” and LightOn 
situation is “the lightContext value is true”.  
 
5. OWL Ontology Reasoning 
 

Various OWL ontology inferences over our 
situation ontology can be performed by DL reasoners, 
such as RACER [18] and Pellet [19].  The following 
inferences are commonly used: 

 Consistency checking: Check whether a situation 
specification is consistent by reasoning if there is 
any inconsistent ontology class or inconsistent 
ontology instance in the specification. 

 Subsumption reasoning: Check whether an 
ontology class subsumes another.  This is useful to 
identify implicit subsume relations in situation 
specifications. 

 Implicit knowledge reasoning: Reason about the 
implicit knowledge conveyed by situation 
specifications. For example, we can reason implicit 
knowledge “room401 sameFloor room415” from 
explicitly specified knowledge “room401 
sameFloor room402” and “room402 sameFloor 
room415” if the sameFloor is a transitive property. 
For pervasive computing applications, it is 
impossible for designers and users to explicitly 
specify all the knowledge. With implicit knowledge 
reasoning capability supported by OWL, the facts 

needed to be specified can be greatly reduced 
without losing any knowledge. 

 
6. FOL Rule-based Reasoning 
 

Our OWL-based situation ontology also supports 
reasoning about whether an entity satisfies a certain 
situation or not by FOL rule-based reasoning. To 
achieve this, the situation ontology specifications are 
first converted to FOL representations and then FOL 
rule-based reasoning is performed using FOL provers. 
 
6.1 Converting OWL Situation Specifications 
to FOL Representations 
 

The basic idea of converting OWL specifications to 
FOL representations is to translate class references to 
unary predicates, properties to binary predicates, and 
OWL axioms (such as owl:sameAs) to FOL rules [20]. 
In [11], FOL reasoning over OWL ontology was also 
discussed.  

To evaluation if there is any entity u satisfying a 
situation s, we can decompose the situation based on 
the situation hierarchy and generate FOL rules from 
the OWL situation specifications according to Table 1. 
By recursively performing these transformation rules, 
the composition tree of the situation and a set of FOL 
rules can be generated. For example, the composition 
tree and rules of ReadyForMeeting situation defined in 
Section 4 are shown in Figure 2. 
 

Table 1. Transformation rules from OWL 
situation specifications to FOL rules 

atomicSituation: 
hasContext: c 
hasBOperator: o 
hasArgument: a 

the associated property of 
(?   ? )

(?   )
(?   ? ) (?   )

  (?   )

p o
u hasContextData cd

cd present c
cd hasValue v v p a

u satisfies s

=

∧
∧ ∧

⇒

 

conjunctionSituation: 
composedBy: 

1 2, ,... ns s s  

1 2(?   ) (?   )
... (?   )

  (?   )
n

u satisfies s u satisfies s
u satisfies s

u satisfies s

∧
∧ ∧

⇒

 

disjunctionSituation: 
composedBy: 

1 2, ,... ns s s  

1

2

(?   ) (?   )
(?   ) (?   )
...
(?   ) (?   )n

u satisfies s u satisfies s
u satisfies s u satisfies s

u satisfies s u satisfies s

⇒
⇒

⇒

 

negationSituation: 
composedBy: s  

(?   ) (?   )u notSatisfy s u satisfies s⇒
 

 
With user-defined properties and the extension of 

SWRL [21], more complicated operators can be 
supported. For example: OnSameFloorAsConference-



 

Room situation can be defined based on the sameFloor 
property of location class, and the rule is 

(?   ? ) (?   )
(?   ? ) (?   )

  (?   )

u hasContextData lo lo present Location
lo hasValue v v sameFloor crLocation

u satisfies OnSameFloorAsConferenceRoom

∧
∧ ∧

⇒

 

Furthermore, SWRL build-ins can also be used to 
reason whether a booleanContextOperator returns true 
value.  For example, SWRL building-in 
swrlb:greatThanOrEqualTo can be used to reason the 
situation HasBroadBandConnection.  

(?   ? )
(?   ) (?   ? )
(?   )

  (?   )

u hasContextData nb
nb present NetworkBandwidth nb hasValue v
v greatThanOrEqualTo "256KB"

u satisfies HasBroadBandConnection

∧ ∧
∧

⇒

 

1

2

1

(?   ) (   )
(   ) (?   ? )
(   ? )
(?   )

  (?   )

1 2

1 2

2

v inDomain ?d "256KB" inDomain ?d
?d sameAs ?d v hasFloatValue f
"256KB" hasFloatValue f

f swrlb : greatThanOrEqualTo f
v greatThanOrEqualTo "256KB"

∧
∧ ∧
∧
∧

⇒

 

 
6.2. Experimental Results of FOL Rule-based 
Reasoning 
 

In this section, the performance of FOL rule-based 
reasoning in terms of problem size and time will be 
discussed. 

In our experiments, the Jena2 toolkit [22] was used 
to generate and parse OWL specifications and convert 
OWL specifications to DFG problems supported by 
SPASS FOL theorem prover [23]. The RDF triple size 
of the situation specifications used in our experiments 
varied from 56 to 1980. We compared the size of FOL 
problems in terms of the number of functions, 
predicates and formula. We also compared the average 
time needed for the conversion from OWL 
specifications to FOL problems and the average time 
for the execution of FOL reasoning. The hardware used 
in our experiments is Dell OPTIPLEX GX820 Desktop 
with 3GHZ CPU and 1GB memory. The results are 
shown in Figure 3. 

From these experimental results, we have the 
following observations:  

 The size of the FOL problem in 
terms of the number of functions 
and formula increases when the 
size of the OWL specification 
increases. It is noted that in our 
experiments, all the situation 
specifications are defined using 
the same ontology, and hence the 
number of predicates does not 
change.  

 The time needed to convert an 
OWL specification to FOL 

problem is negligible.  Even for a large OWL 
specification including 2000 RDF triples, the 
conversion only takes about 160 microseconds.  

 The time needed for FOL rule-based reasoning 
increases dramatically when the size of the OWL 
specification increases, especially when the OWL 
specification size is over 1000 RDF triples.  
These observations indicate that FOL rule-based 

reasoning is feasible for situation reasoning for non-
time-critical applications, especially when the size of 
the situation specification is small. For large situation 
specifications, each single situation reasoning task 
usually only requires a small part of the specification 

(?   ? ) (?   )
(?   ? ) (?   )

(?   )

u hasContextData lo lo present Location
lo hasValue v v owl : sameAs crLocation

u satisfies InConferenceRoom

∧
∧ ∧
⇒

(?   )
(?   )

(?   Re )

u satisfies InConferenceRoom
u satisfies LigthOn

u satisfies adyForMeeting
∧
⇒

(?   ? ) (?   )
(?   ? ) (?   )

(?   )

u hasContextData li li present Light
li hasValue v v owl : sameAs TrueValue

u satisfies LightOn

∧
∧ ∧
⇒

 
Figure 2. A composition tree example 

 

 
Figure 3. Experimental results  of FOL Rule-

based Reasoning 



 

rather than the entire specification. Therefore, when 
OWL specification is converted to FOL problem; only 
the related portion of the specification needs to be 
converted so that the reasoning time is reduced. As for 
time-critical applications, FOL rule-based situation 
reasoning is not applicable, and specially designed and 
time-efficient processes need to be used. 
 
7. Conclusions and Future Work 
 

In this paper, a hierarchical OWL-based situation 
ontology, which satisfies all the requirements in 
Section 3, is presented.  The situation ontology models 
the core upper ontology for contexts and situations in 
pervasive computing environments using machine-
interpretable semantic-based OWL DL. The 
hierarchical situation ontology facilitates sharing and 
reusing of situation information, and can be easily 
extended with domain specific knowledge. The logic 
inferences supported by the situation ontology, 
including the conversion of OWL situation ontology 
specifications to FOL representations and the 
performance of FOL rule-based reasoning in terms of 
problem size and time, are also discussed. We have 
shown that the situation can be effectively modeled 
using our OWL-based situation ontology, and that 
logic reasoning can be performed on the situation 
ontology specifications. 

Future research in this area includes improving 
situation ontology with temporal logic to reason the 
values of temporalSituations, and developing 
algorithms to minimize the FOL problem size 
converted from situation ontology specifications. 
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