

Hierarchical Situation Modeling and Reasoning for Pervasive Computing

Stephen S. Yau and Junwei Liu
Arizona State University

Tempe, AZ 85287-8809, USA
{yau, junwei.liu}@asu.edu

Abstract

Situation awareness is one of the most fundamental
features of entities in pervasive computing
environments to dynamically adapt their behavior to
situation changes to satisfy user requirements,
including security and privacy. In order to support
situation-aware adaptation, it is necessary to model
and specify context and situation in a way such that
multiple entities can easily exchange, share and reuse
their knowledge on context and situation. In this paper,
an OWL-based situation ontology to model situation
hierarchically to facilitate sharing and reusing of
situation knowledge and logic inferences is presented.
The conversion of OWL situation ontology
specifications to the First-Order Logic (FOL)
representations, and the performance of FOL rule-
based reasoning in terms of problem size and time are
discussed.

Keywords: Situation awareness, situation modeling,
situation reasoning, pervasive computing, Semantic
Web, ontology and OWL.

1. Introduction

In pervasive computing environments, various
entities are expected to integrate and cooperate
seamlessly to achieve user objectives in an anywhere-
and-anytime fashion. Situation awareness (SAW) is
the capability of the entities in pervasive computing
environments to be aware of situation changes and
automatically adapt themselves to such changes to
satisfy user requirements, including security and
privacy. SAW is one of the most fundamental features
to support dynamic adaptation of entities in pervasive
computing environments. A situation is a set of
contexts in the application over a period of time that
affects future system behavior. A context is any
instantaneous, detectable, and relevant property of the

environment, system, or users, such as location,
available bandwidth and a user’s schedule [1, 2]. A
pervasive computing environment involves a set of
cooperative entities, each of which has related context
data. In order to support situation-aware adaptation of
the entities in pervasive computing environments, it is
necessary to model and specify context and situation in
a way such that multiple entities can easily exchange,
share and reuse their knowledge on context and
situation.

With recent development of Semantic Web [3],
ontology has been widely used to facilitate knowledge
sharing and reusing. For pervasive computing
environments, using ontology to model context and
situation enables multiple entities to have common
understanding of the context and situation during
collaboration. Web Ontology Language (OWL) [4] is a
W3C standard for representing machine interpretable
knowledge in Semantic Web. OWL provides three
increasingly expressive sublanguages: OWL Lite, OWL
DL and OWL Full. OWL DL has the maximum
expressiveness, and is computationally complete and
decidable. In addition, it supports formal logic
reasoning [4]. It is called OWL DL due to its
correspondence with Description Logics (DL).

In this paper, an OWL-based situation ontology will
be presented for context and situation knowledge
modeling. The situation ontology uses OWL DL to
model context and situation in a hierarchical way such
that the specifications for context and situation can be
easily shared and reused among multiple entities.
Furthermore, the use of OWL DL supports formal
logical reasoning over the situation ontology for
consistency checking, subsumption reasoning, implicit
knowledge inference. We will also discuss the
conversion of OWL situation ontology specifications
to the First-Order Logic (FOL) representations and the
performance of FOL rule-based reasoning in terms of
problem size and time.

2. Current State of the Art

Context modeling for pervasive computing has been
well studied in recent years. Composite Capabilities /
Preferences Profile (CC/PP) [5] created by the W3C,
and User Agent Profile (UAProf) created by the WAP
Forum [6] and their extensions [7, 8], are Resource
Description Framework (RDF) based approaches that
describe the context information related to the mobile
devices. The Context Broker Architecture (CoBrA)
system [9] has a set of context entities modeled using
OWL, and uses broker-centric agent architecture to
acquire, share, reason and protect context information.
The Aspect-Scale-Context (ASC) model and Context
Ontology Language (CoOL) are introduced for context
modeling and can be used in DAML-S model to
represent the context information of services in [10].
The Context Ontology (CONON) context modeling
approach [11] models an upper ontology for context
and uses OWL DL language to represent and reason
over CONON. These approaches all focus on modeling
context, which is not sufficient for situation modeling.

Among the approaches for modeling situation, the
following are four major ones: In Context Toolkit [12],
situation is modeled on a system level as the
aggregation of context, but there is no language level
situation modeling. Situation calculus and its
extensions [13, 14] model situation based on the
effects of actions and events, and consider situation as
a complete state of the world. Hence, situation is not
fully described. This causes the well-known frame
problem and ramification problem [13]. A core SAW
ontology [15] models situation as a collection of Goals,
SituationObjects and Relations using UML, and can be
converted to OWL representation. How to model
context, derive situation based on context and reuse
simple situation definition to compose complicated
situation are not considered. A conceptual model for
context and situation for service-based systems and a
situation specification example based on the
conceptual model using F-logic are presented in [16,
17].

3 Requirements of Situation Modeling

Pervasive computing environments usually involve
entities with different platforms connected through
heterogeneous wired and wireless networks. These
entities need to interoperate with each other to achieve
user objectives. To make these entities situation aware
in such dynamic environments, the situation modeling
approach must satisfy the following requirements:

 Machine interpretable: The modeled situation
knowledge must be easily exchanged among

various devices across heterogeneous networks.
Hence, it must be machine-interpretable.

 Semantic-based: The modeled situation
knowledge must have well-defined semantics so
that multiple entities in different environments can
understand and interoperate with each other
correctly.

 Reusable: The modeled situation knowledge
should be reusable to reduce the information
needed to be transferred and processed.

 Extensible: Different pervasive computing systems
will have different domain specific knowledge. The
modeling approach must support extension of such
domain specific knowledge.

 Logic inference: The modeled situation knowledge
should support formal logic inference for
verification and reasoning.

4 OWL-based Situation Ontology

Due to the complexity of pervasive computing
environments, it is impossible to enumerate all possible
contexts and situations in a single ontology. Our
situation ontology only models the upper ontology for
context and situation by defining a set of core classes
and relations using OWL DL. For each pervasive
computing application, specific domain-related
knowledge can be easily extended. Consider a smart
conference environment scenario: “If the user is in the
conference room and the light is on, then the user is
ready for a meeting”. Complicated situation
(ReadyForMeeting) is derived from the basic contexts
(location and light). Based on the conceptual model
presented in [16, 17], the contexts in our OWL-based
situation ontology are aggregated as situations and
complicate situations are composed of simple
situations in a hierarchical structure to facilitate the
sharing and reusing of context and situation knowledge
since the semantics of context/situation specification
can be clearly understood by all entities in the system.
The hierarchical structure of situation ontology can be
roughly divided to two layers: context layer and
situation layer. By separating context layer and
situation layer, we separate the context acquisition and
processing from the situation evaluation, which gives a
clearer view of SAW and facilitates SAW development
[12].

Context layer: Context layer models context
definition, contextual data of entities and various
context value domains in an upper ontology with the
following ontology classes and relations:

 Context class: The context class is the super class
for all the contexts in pervasive computing
environments. Any instance of the context class

represents a conceptual context, such as
availableBandwidthContext or locationContext.
Different contexts can be indexed hierarchically
based on class hierarchy, such as deviceContext,
environmentContext and userContext in Figure 1.

 contextData class: An instance of contextData will
represent a certain context, and have associated
host ID, timestamp and context value. All the
contextData instances, which represent the same
context and have the same host ID, define a
specific context instance in the system within a
certain time period. Any Entity in pervasive
computing system can specify related contextual
data using property relatedContextData.

 contextValue class: The actual value of the context
is modeled by contextValue class. The context
value in pervasive computing environments can be
simple, such as the float number temperature value,
or complicated data structures, like a location
involving address number, street name, city, state
and zip code. To support such variation, the
contextValue class can have multiple subclasses to
deal with different types of values. User can define
a complex ontology class streetLocation class as a
subclass of contextValue class. Simple data types
like float or Boolean can be wrapped into
floatValue or booleanValue classes.

 contextValueDomain class: For each context, the
valid domain of its value is defined by
contextValueDomain class with hasDomain
property. Each contextValue instance also belongs
to a certain context value domain via inDomain
property. Multiple context value domains of a

context corresponding to different context value
scales. For example, the available-MemoryContext
may have two context value domains
corresponding to scales of MB and Bytes.

 dataContextOperation / booleanContextOperator
class: The context value interpretation between
different domains is modeled as dataContext-
Operation. The booleanContextOperor is a special
type of context value interpretation which returns a
Boolean value and is used to compose atomic
situation definition in the situation layer. Each
booleanContextOperor instance may associate with
a rdf:Property by the URI of the property, such as
owl:sameAs or location:sameFloor,
Situation layer: The situation layer is built on top

of the context layer to aggregate context into situations
and to compose complicated situations of simple
situations via logical composition and temporal
composition. Whether an entity in a pervasive
computing environment satisfies a certain situation or
not is specified via satisfies and notSatisfy properties.

 Situation class: The Situation class is the super
class for all the situations in pervasive computing
environments. Different situations form a hierarchy
based on their derivation and can be divided to two
major categories: atomicSituation and
compositeSituation.

 atomicSituation class: The atomicSituation class
represents all the basic situations whose value is
directly derived from the value of a single
contextual data with respect to certain operator and
argument. The situation layer links to the context
layer with three properties: atomicSituation:

Figure 1. The situation ontology

hasContext, hasBOperator and hasArgument. The
evaluation of the atomicSituation has the semantic
of “The atomic situation is satisfied by an entity iff
the entity has a related contextual data
representing the context and the Boolean context
operator over the contextual data value and the
argument returns true.”

 compositeSituation class: The compositeSituation
class represents complicated situations: either the
logical composition over other situations
(conjunctionSituation, disjunctionSituation and
negationSituation), or the temporalSituation whose
value is derived from the value history of another
situation. All these four subclasses of
compositeSituation are disjoint with each other.
Although supporting all the three types of logical
composition is redundant, it is more convenient for
situation specification. A temporalSituation
instance must have associated temporalOperator,
such as alwaysTrue or onceTrue, and timePeriod.
Using the situation ontology, the above-mentioned

smart conference scenario can be specified as
“situation ReadyForMeeting is the conjunction of two
atomic situations InConferenceRoom and LightOn”,
where InConferenceRoom situation is “the location-
Context value is same as crLocation” and LightOn
situation is “the lightContext value is true”.

5. OWL Ontology Reasoning

Various OWL ontology inferences over our
situation ontology can be performed by DL reasoners,
such as RACER [18] and Pellet [19]. The following
inferences are commonly used:

 Consistency checking: Check whether a situation
specification is consistent by reasoning if there is
any inconsistent ontology class or inconsistent
ontology instance in the specification.

 Subsumption reasoning: Check whether an
ontology class subsumes another. This is useful to
identify implicit subsume relations in situation
specifications.

 Implicit knowledge reasoning: Reason about the
implicit knowledge conveyed by situation
specifications. For example, we can reason implicit
knowledge “room401 sameFloor room415” from
explicitly specified knowledge “room401
sameFloor room402” and “room402 sameFloor
room415” if the sameFloor is a transitive property.
For pervasive computing applications, it is
impossible for designers and users to explicitly
specify all the knowledge. With implicit knowledge
reasoning capability supported by OWL, the facts

needed to be specified can be greatly reduced
without losing any knowledge.

6. FOL Rule-based Reasoning

Our OWL-based situation ontology also supports
reasoning about whether an entity satisfies a certain
situation or not by FOL rule-based reasoning. To
achieve this, the situation ontology specifications are
first converted to FOL representations and then FOL
rule-based reasoning is performed using FOL provers.

6.1 Converting OWL Situation Specifications
to FOL Representations

The basic idea of converting OWL specifications to
FOL representations is to translate class references to
unary predicates, properties to binary predicates, and
OWL axioms (such as owl:sameAs) to FOL rules [20].
In [11], FOL reasoning over OWL ontology was also
discussed.

To evaluation if there is any entity u satisfying a
situation s, we can decompose the situation based on
the situation hierarchy and generate FOL rules from
the OWL situation specifications according to Table 1.
By recursively performing these transformation rules,
the composition tree of the situation and a set of FOL
rules can be generated. For example, the composition
tree and rules of ReadyForMeeting situation defined in
Section 4 are shown in Figure 2.

Table 1. Transformation rules from OWL
situation specifications to FOL rules

atomicSituation:
hasContext: c
hasBOperator: o
hasArgument: a

the associated property of
(? ?)

(?)
(? ?) (?)

 (?)

p o
u hasContextData cd

cd present c
cd hasValue v v p a

u satisfies s

=

∧
∧ ∧

⇒

conjunctionSituation:
composedBy:

1 2, ,... ns s s

1 2(?) (?)
... (?)

 (?)
n

u satisfies s u satisfies s
u satisfies s

u satisfies s

∧
∧ ∧

⇒

disjunctionSituation:
composedBy:

1 2, ,... ns s s

1

2

(?) (?)
(?) (?)
...
(?) (?)n

u satisfies s u satisfies s
u satisfies s u satisfies s

u satisfies s u satisfies s

⇒
⇒

⇒

negationSituation:
composedBy: s

(?) (?)u notSatisfy s u satisfies s⇒

With user-defined properties and the extension of

SWRL [21], more complicated operators can be
supported. For example: OnSameFloorAsConference-

Room situation can be defined based on the sameFloor
property of location class, and the rule is

(? ?) (?)
(? ?) (?)

 (?)

u hasContextData lo lo present Location
lo hasValue v v sameFloor crLocation

u satisfies OnSameFloorAsConferenceRoom

∧
∧ ∧

⇒

Furthermore, SWRL build-ins can also be used to
reason whether a booleanContextOperator returns true
value. For example, SWRL building-in
swrlb:greatThanOrEqualTo can be used to reason the
situation HasBroadBandConnection.

(? ?)
(?) (? ?)
(?)

 (?)

u hasContextData nb
nb present NetworkBandwidth nb hasValue v
v greatThanOrEqualTo "256KB"

u satisfies HasBroadBandConnection

∧ ∧
∧

⇒

1

2

1

(?) ()
() (? ?)
(?)
(?)

 (?)

1 2

1 2

2

v inDomain ?d "256KB" inDomain ?d
?d sameAs ?d v hasFloatValue f
"256KB" hasFloatValue f

f swrlb : greatThanOrEqualTo f
v greatThanOrEqualTo "256KB"

∧
∧ ∧
∧
∧

⇒

6.2. Experimental Results of FOL Rule-based
Reasoning

In this section, the performance of FOL rule-based
reasoning in terms of problem size and time will be
discussed.

In our experiments, the Jena2 toolkit [22] was used
to generate and parse OWL specifications and convert
OWL specifications to DFG problems supported by
SPASS FOL theorem prover [23]. The RDF triple size
of the situation specifications used in our experiments
varied from 56 to 1980. We compared the size of FOL
problems in terms of the number of functions,
predicates and formula. We also compared the average
time needed for the conversion from OWL
specifications to FOL problems and the average time
for the execution of FOL reasoning. The hardware used
in our experiments is Dell OPTIPLEX GX820 Desktop
with 3GHZ CPU and 1GB memory. The results are
shown in Figure 3.

From these experimental results, we have the
following observations:

 The size of the FOL problem in
terms of the number of functions
and formula increases when the
size of the OWL specification
increases. It is noted that in our
experiments, all the situation
specifications are defined using
the same ontology, and hence the
number of predicates does not
change.

 The time needed to convert an
OWL specification to FOL

problem is negligible. Even for a large OWL
specification including 2000 RDF triples, the
conversion only takes about 160 microseconds.

 The time needed for FOL rule-based reasoning
increases dramatically when the size of the OWL
specification increases, especially when the OWL
specification size is over 1000 RDF triples.
These observations indicate that FOL rule-based

reasoning is feasible for situation reasoning for non-
time-critical applications, especially when the size of
the situation specification is small. For large situation
specifications, each single situation reasoning task
usually only requires a small part of the specification

(? ?) (?)
(? ?) (?)

(?)

u hasContextData lo lo present Location
lo hasValue v v owl : sameAs crLocation

u satisfies InConferenceRoom

∧
∧ ∧
⇒

(?)
(?)

(? Re)

u satisfies InConferenceRoom
u satisfies LigthOn

u satisfies adyForMeeting
∧
⇒

(? ?) (?)
(? ?) (?)

(?)

u hasContextData li li present Light
li hasValue v v owl : sameAs TrueValue

u satisfies LightOn

∧
∧ ∧
⇒

Figure 2. A composition tree example

Figure 3. Experimental results of FOL Rule-

based Reasoning

rather than the entire specification. Therefore, when
OWL specification is converted to FOL problem; only
the related portion of the specification needs to be
converted so that the reasoning time is reduced. As for
time-critical applications, FOL rule-based situation
reasoning is not applicable, and specially designed and
time-efficient processes need to be used.

7. Conclusions and Future Work

In this paper, a hierarchical OWL-based situation
ontology, which satisfies all the requirements in
Section 3, is presented. The situation ontology models
the core upper ontology for contexts and situations in
pervasive computing environments using machine-
interpretable semantic-based OWL DL. The
hierarchical situation ontology facilitates sharing and
reusing of situation information, and can be easily
extended with domain specific knowledge. The logic
inferences supported by the situation ontology,
including the conversion of OWL situation ontology
specifications to FOL representations and the
performance of FOL rule-based reasoning in terms of
problem size and time, are also discussed. We have
shown that the situation can be effectively modeled
using our OWL-based situation ontology, and that
logic reasoning can be performed on the situation
ontology specifications.

Future research in this area includes improving
situation ontology with temporal logic to reason the
values of temporalSituations, and developing
algorithms to minimize the FOL problem size
converted from situation ontology specifications.

Acknowledgment

The work reported here is supported by the National
Science Foundation under the grant number ITR-
CYBERTRUST 0430565. The authors would like to
thank Dazhi Huang of Arizona State University for
many valuable discussions.

References
[1] S. S. Yau, Y. Wang, and F. Karim, "Development of
Situation-Aware Application Software for Ubiquitous
Computing Environments", Proc. 26th Ann. Int'l Computer
Software and Applications Conf., 2002, pp. 233-238.
[2] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S.Gupta,
"Reconfigurable Context-Sensitive Middleware for Pervasive
Computing," IEEE Pervasive Computing, 1(3), July-
September 2002, pp.33-40.
[3] T. Berners-Lee, J. Hendler, and O. Lassila, “The
Semantic Web”, Scientific American, May 2001, pp. 34-43.
[4] OWL Web Ontology Language, Available at:
http://www.w3.org/TR/owl-ref/.

[5] W3C. Composite Capabilities / Preferences Profile
(CC/PP), Available at: http://www.w3.org/Mobile/CCPP/
[6] WAPFORUM. User Agent Profile (UAProf). Available
at: http://www.wapforum.org.
[7] Albert Held, Sven Buchholz and Alexander Schill,
“Modeling of context information for pervasive computing
applications”, Proc. 6th World Multiconference on Systemics,
Cybernetics and Informatics (SCI2002), 2002.
[8] Indulska, J., Robinson, R., Rakotonirainy, A., and
Henricksen, K. “Experiences in Using CC/PP in Context-
Aware Systems”, Proc. 4th Int’l Conf. on Mobile Data
Management, 2003, pp. 247-261.
[9] H. Chen, T. Finin, A. Joshi, “Using OWL in a Pervasive
Computing Broker”, Proc. Workshop on Ontologies in Open
Agent Systems, 2003, pp. 9-16.
[10] T. Strang, C. Linnhoff-Popien, and K. Frank, “CoOL: A
Context Ontology Language to enable Contextual
Interoperability”, Proc. 4th IFIP Int’l Conf. on Distributed
Applications and Interoperable Systems, 2003, pp. 236-247.
[11] X. Wang, D. Zhang, T. Gu and H. Pung, “Ontology-
Based Context Modeling and Reasoning using OWL”, Proc.
2nd IEEE Ann. Conf’ on Pervasive Computing and
Communications Workshops, 2004, pp. 18-22.
[12] Anind K. Dey, “Providing Architectural Support for
Building Context-Aware Applications”, PhD thesis, College
of Computing, Georgia Institute of Technology, 2000.
[13] J. A. Pinto, Temporal Reasoning in the Situation
Calculus, PhD Thesis, University of Toronto, 1994.
[14] J. McCarthy., “Situation Calculus with Concurrent
Events and Narrative”, http://wwwformal.stanford.edu/jmc/
narrative/ narrative.html, 2000.
[15] C. J. Matheus, M. M. Kokar, and K. Baclawski, “A Core
Ontology for Situation Awareness”, Proc. 6th Int’l Conf. on
Information Fusion, 2003, pp. 545 –552.
[16] S. S. Yau, D. Huang, H. Gong and H. Davulcu,
“Situation-Awareness for Adaptable Service Coordination in
Service-based Systems”, Proc. 29th Ann. Int'l Computer
Software and Application Conference, 2005, pp. 107-112.
[17] S. S. Yau, D. Huang, H. Gong, and Y. Yao, "Support for
Situation-Awareness in Trustworthy Ubiquitous Computing
Application Software", Jour. of Software Practice and
Engineering, to appear.
[18] V. Haarslev and R. Möller. “Racer: A Core Inference
Engine for the Semantic Web”, Proc.2nd Int’l Workshop on
Evaluation of Ontology-based Tools, 2003, pp. 27-36.
[19] Pellet. Pellet - OWL DL Reasoner, 2003.
http://www.mindswap.org/2003/pellet.
[20] Using a First Order Logic Prover with OWL. Available
at: http://wonderweb.man.ac.uk/owl/first-order.shtml
[21] SWRL: A Semantic Web Rule Language Combining
OWL and RuleML. Available at:
http://www.w3.org/Submission/SWRL/.
[22] Jena2 Semantic Web Toolkit. Available at:
http://www.hpl.hp.com/semweb/jena2.htm.
[23] C. Weidenbach, U. Brahm, T. Hillenbrand, E. Keen, C.
Theobalt, and D. Topic, SPASS version 2.0. Automated
Deduction – CADE-18, LNCS 2392, 2002, pp. 275–279.

