
A Privacy Preserving Repository for Data
Integration across Data Sharing Services

Stephen S. Yau, Fellow, IEEE, and Yin Yin

Abstract—Current data sharing and integration among various organizations require a central and trusted authority to collect data from

all data sources and then integrate the collected data. This process tends to complicate the update of data and to compromise data

sources’ privacy. In this paper, a repository for integrating data from various data sharing services without central authorities is

presented. With our repository, data sharing services can update and control the access and limit the usage of their shared data, instead

of submitting data to authorities, and, hence, our repository will promote data sharing and integration. The major differences between our

repository and existing central authorities are: 1) Our repository collects data from data sharing services based on users’ integration

requirements rather than all the data from the data sharing services as existing central authorities. 2) While existing central authorities

have full control of the collected data, the capability of our repository is restricted to computing the integration results required by users

and cannot get other information about the data or use it for other purposes. 3) The data collected by our repository cannot be used to

generate other results except that of the specified data integration request, and, hence, the compromise of our repository can only reveal

the results of the specified data integration request, while the compromise of central authorities will reveal all data.

Index Terms—Privacy concerns of service-oriented solutions, privacy management in data collection, services composition.

Ç

1 INTRODUCTION

MUCH effort has been devoted to facilitating data
sharing and integration among various organizations.

However, the development of such systems is hindered by
the lack of robust and flexible techniques to protect the
privacy of the shared data. Existing data sharing and
integration systems are usually implemented as centralized
data warehouses collecting and storing data from various
data sources. Typically, data sources and data warehouses
expect to sign business agreements in which the scope of
the shared data and corresponding privacy policies are
specified. For example, all shared data will be kept
confidential and will not be disclosed to other unrelated
third parties or be used for other purposes. While this
solution works well for a single organization or a federation
of organizations, where trust relations have been well
established, serious problems will arise when some data
warehouses cannot be trusted by data sources. In such
cases, data sources will refuse to share their data because
they have no control of its usages and disclosures once the
data is shared. In fact, data warehouses indeed can reveal or
abuse the shared data. Furthermore, even if data ware-
houses adhere to the agreement, there is no guarantee that
they have sufficient capability to protect the data.

The most significant problem of existing data sharing
and integration solutions is that they give data warehouses
too much power, which may not be needed for data
sharing. For instance, a hospital may be asked to share its
patients’ social security numbers (SSNs) because they are

used to locate patients’ records from various hospitals.
Unfortunately, SSNs can also be used for other purposes,
such as checking patients’ credit histories. But, when SSNs
are only used as keys to link records from various hospitals,
the SSNs can be replaced by their hash values without
affecting their functionality as keys.

This example suggests that it is more convenient and
secure to share and integrate data by developing a data
sharing service for each data source to share data and a
repository to collect data from data sharing services, where
data sharing services control their own data and only share
data according to integration requirements, instead of
sharing all data to the repository. Unlike existing business
process languages, such as WS-BPEL [1], which focus on the
protection of the access to services and the integrity and
confidentiality of service messages [19], we assume that our
repository can access all shared data, which is well protected.
The security requirement of data sharing is to ensure that
data sharing services share only the information of the data
needed by the repository to satisfy users’ specific integration
requirements, and the repository cannot use the shared
information to generate other results except those required
by users. In this paper, the attributes of data and how it will
be integrated are considered as the context of the data. With
our query plan language, a data sharing service for data
integration, which is represented by a node in the query plan
graph, has a context consisting of only its adjacent nodes and
edges in the query plan graph.

In this paper, we will present a privacy preserving
repository to accept integration requirements from users,
help data sharing services share data and safeguard their
privacy, collect and integrate the required data from data
sharing services, and return the integration results to users.
Our repository will focus on the matching operations and
has the following major benefits:

1. The data sharing services can update and control the
access and usages of their shared data. That is, data-

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2008 1

. The authors are with the Department of Computer Science and
Engineering, School of Computing and Informatics, and Information
Assurance Center, Arizona State University, PO Box 878809, Tempe, AZ
85287-8804. E-mail: {yau, yin.yin}@asu.edu.

Manuscript received 17 Nov. 2008; revised 4 Dec. 2008; accepted 5 Dec. 2008;
published online 11 Dec. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2008-11-0103.
Digital Object Identifier no. 10.1109/TSC.2008.14.

1939-1374/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

sharing services can update their data whenever
necessary and determine who and how their shared
data can be used.

2. The data is shared based on the need-to-share
principle, which means that the released information
of the data is sufficient to support users’ integration
requirements, but contains no more information of
the data.

3. The repository’s capability is limited to collecting
data from data sharing services and integrating the
data to satisfy users’ integration requirements. Except
the information needed to be revealed for data inte-
gration, the repository will not have extra information
about the data and cannot use it for other purposes.

2 A MOTIVATING EXAMPLE

Let us consider a healthcare information system which
collaborates with multiple organizations through sharing
and integrating data. The organizations may include
medical research institutes, DNA databases, hospitals, and
pharmacies for the purpose of studying the reactions of
popular heart medicines sold in pharmacies. For the sake of
simplicity, we assume that the system only communicates
with one medical research database T1ðDisease; PatternÞ
storing diseases and corresponding DNA patterns, a DNA
database T2ðSSN;PatternÞ storing personal DNA patterns,
a hospital database T3ðSSN;Medicine;ReactionÞ storing all
patients’ diagnosis histories, and a pharmacy database
T4ðDisease;DrugÞ storing popular drugs for each disease.
The databases’ schemas and data are listed in Table 1.

This example may be expressed in terms of four SQL
queries shown in Table 2, where Q1, Q2, and Q3 generate
three temporary tables,Tmp1,Tmp2, andTmp3, respectively,
and the last query, Q4, outputs the final results. With the
existing central warehouse solution, all data shown in Table 1
is collected by a central authority which can execute all
queries. However, our repository is allowed to collect only the
needed information about data for integration. On the other
hand, because the repository needs some extra information to
execute queries, such asQ1’s result, which is needed byQ2 as
an input, our repository will randomizeQ1’s result and make
the randomized result still usable for Q2. Although existing
privacy-preserving query processing approaches, such as [6],
[7], [10], [16], [22], [25], [28], can evaluate a query on
randomized data, none of them can handle a series of queries,
where some queries need other queries’ results as inputs,
such asQ2 in this motivating example. To protectQ1’s result
fp1; p2g without disabling Q2, fp1; p2g is replaced by
fHðp1Þ; Hðp2Þg, where H is a hash function. Because the
hashed DNA patterns will usually remain unique, the
repository can evaluate Q2 by comparing HðTmp1:PatternÞ
and HðT2:PatternÞ. This simple hash solution can avoid the
need for our repository to knowQ1’s results, but still keep the
mapping relation between nonheart diseases and patients’
SSNs. Since Hðp3Þ does not appear in the Q1’s hashed result
fHðp1Þ; Hðp2Þg, our repository can find that the patient with
ssn4 is not a heart disease patient.

To further protect the privacy of such information, we
will develop a Context-Aware Data Sharing algorithm
(Algorithm 2, Section 7) to randomize Q1’s result, where
the context-awareness implies that when a medical research
institute shares its database Research T1 with our reposi-
tory, it should know that its DNA pattern data will be used
to match the DNA pattern data from T2. While the simple
hash solution only randomizes the items in Q1’s result (i.e.,
p1; p2), our Context-Aware Data Sharing algorithm rando-
mizes all patterns in T1, but ensures that only p1 and p2 can
be used to evaluate Q2. Hence, the mapping between
nonheart diseases and SSNs are well protected.

In this paper, we will use the above example to show how
our repository for studying the reactions of popular heart
medicines sold in pharmacies cannot reveal any additional
information about the data of databases T1, T2, T3, and T4.

3 PRELIMINARIES

3.1 System Architecture and Assumptions

In existing data integration systems, it is assumed that there
is a central and trusted authority collecting all data from data

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2008

TABLE 1
The Databases in the Motivating Example

(a) Research T1. (b) DNA T2. (c) Hospital T3. (d) Pharmacy T4.

TABLE 2
The Queries Required by the Motivating Example

sharing services and computing integration results for users
based on the collected data. Such an assumption is often not
valid for data sharing services across various organizations.

In our system, as shown in Fig. 1, our repository collects
only the required data for users’ integration requests. We
assume that our repository will correctly construct the query
plans for users’ integration requirements, decompose query
plans, discover and fetch data from distributed data sharing
services, integrate all data together, and, finally, return the
final results to users. Furthermore, we assume that our
repository is granted the access to the shared data by all data
sharing services, and all shared data is well protected.
Because the data sharing services use our context-aware
date sharing algorithm, our repository cannot learn extra
information from the inferential relations of the information
it obtains during the integration process.

Our repository consists of two components: the query
plan wrapper and the query plan executor. The query plan
wrapper is responsible for analyzing integration require-
ments and constructing query plans for the query plan
executor. Since the wrapper development and optimization
have been extensively studied [5], [8], [18], [19], [21], [30], we
assume that the query plan wrapper can select data sharing
services and construct a query plan graph (to be defined in
Section 5) from users’ integration requirements. Based on
this assumption, we will focus on how to decompose the
query plan graph into a set of small subgraphs for each data
sharing service to guide data sharing services to prepare
shared data.

The query plan executor is responsible for executing
query plans to fetch data from data sharing services and
producing the final results. In this paper, we will develop a
secure query plan executor which can execute query plans
without additional information about the data of data
sharing services.

3.2 Privacy Preserving Query Plan with Repository

To formulate the privacy preserving data integration across
data sharing services, we need to define the query plan:

Definition 1 (Query Plan). A query plan P is a partially
ordered set of queries fp1; p2; � � � ; pmg with two properties:

. Each pi can be evaluated only after all of its precedent
queries have been evaluated.

. Each pi can use the data directly from data sharing
services or its precedent queries’ outputs as inputs.

The final result of P is the outputs of pi with no successive
queries, and all other queries’ outputs are intermediate results.

The above definition indicates that a query plan P has a
much richer structure than a single query or a set of
independent queries. First, there is a partial order relation
among queries in P . Second, only the outputs of queries in
P without successive queries constitute the final result and
all other intermediate results should be protected. Conse-
quently, we have the following definition:

Definition 2 (Privacy Preserving Repository). For a query
planP ¼ fp1; p2; � � � ; pmg and a repositoryREP ,REP is a pri-
vacy preserving repository for data integration ifREP executes
P in a privacy preserving manner as follows: 1) REP only has
P ’s final result encrypted with user’s public key and has no
information onP ’s intermediate results; and 2)REP cannot use
the data shared for P to evaluate any other queries.

4 OVERVIEW OF OUR APPROACH

As discussed in Section 1, our goal is to develop a
repository to facilitate the data integration across data
sharing services. In this section, we will present the process
of the data integration via our privacy preserving repository
REP . The process can be summarized as follows:

. Step 1. The user sends his/her public key pk and the
requirements about data integration to our reposi-
tory REP .

. Step 2. The query plan wrapper of REP analyzes the
user’s integration requirements and converts them to
a query plan graph G, and then decomposes G to a
set of subgraphs fG1; G2; � � � ; Gmg using the Decom-
pose Algorithm (Algorithm 1, Section 6) and sends the
subgraphs to the query plan executor. Every sub-
graph Gi represents the context of one data sharing
service for conducting context-aware data sharing.

. Step 3. For every Gi, the query plan executor looks
for the corresponding data sharing service Si and
sends Gi to Si, which prepares the data using the
Context-Aware Data Sharing Algorithm (Algorithm 2,
Section 7) and returns all randomized data to the
query plan executor.

. Step 4. The query plan executor executes the
Integrate Algorithm (Algorithm 3, Section 8) on all
returned data to execute the G and outputs the
results FinalRes of user’s request, which is en-
crypted with the user’s public key pk.

. Step 5. REP sends FinalRes to the user who then
decrypts it with his/her secret key sk.

5 A QUERY PLAN LANGUAGE

In this section, we will present an XML-like language, called
QPSL, representing the data integration process as a query
plan graph G. This language will help the repository figure
out what data should be retrieved from data sharing

YAU AND YIN: A PRIVACY PRESERVING REPOSITORY FOR DATA INTEGRATION ACROSS DATA SHARING SERVICES 3

Fig. 1. Our privacy preserving repository for data integration across data
sharing services.

services and how to integrate the data together, and will
help data sharing services share their data without
revealing more information than the evaluation of G needs.

5.1 The Query Plan Graph

For a data integration requirement involving n data
sharing services S1; S2; � � � ; Sn, the query plan graph G ¼
fV ;E;Cg is a labeled directed acyclic graph. V ¼
fv1; v2; � � � ; vm; s; tg is a set of nodes with each vi representing
a data sharing service, s representing the source node for
collecting the inputs from users, and t representing the sink
node for receiving all final result of the query plan. E ¼
fe1; e2; � � � ; elg is a set of edges, and each edge ei;j ¼ ðvi; vjÞ
represents a data integration relation between data
sharing services vi and vj. Finally, C ¼ fc1; c2; � � � ; clg is a set
of labels attached with each ei;j 2 E, and each label ci;j ¼
ðop; attr1; attr2Þ 2 C specifies that the data from the data
sharing services vi and vj is integrated by the data integration
operator op between vi’s attribute attr1 and vj’s attribute
attr2. Generally, the operator op can be any binary compar-
ison operator chosen from f¼; 6¼; >;<g or any aggregate
operator chosen from fSUM;AVG;MAX;MINg. However,
in this paper, we focus on the operator ¼ and discuss SUM
and AVG in Section 11.

The motivating example in Section 2 can be represented
by the query plan graph shown in Fig. 2, where each edge
represents a query in Table 2. The edge ðs; T1Þ represents the
queryQ1, ðT1; T2Þ represents the queryQ2, ðs; T4Þ represents
the query Q3, and ðT2; T3Þ and ðT4; T3Þ together represent
the query Q4. The sink node t’s in-edge ðT3; tÞ does not rep-
resent any query, but the final result of the data integration.

Besides representing queries, the query plan graph
shown in Fig. 2 also represents queries’ partial order
relation defined in Definition 1 by edges’ direction.

5.2 QPSL Schema

In this section, we will present a Query Plan Specification
Language (QPSL) to represent a query plan graph G as a
XML document. With the DTD schema [1] depicted in Fig. 3,
QPSL will represent G as a set of edge and node elements.

Each edge element has three attributes id, head, and tail,
where id is the edge’s unique identity, head is the edge’s
head node, and tail is the edge’s tail node. In addition, each
edge element also has two subelements r and condition,
where r is a random number used by data sharing services
and our repository for privacy preserving data integration,
and condition represents the label attached with the edge.

Each node element has an attribute id representing the
data sharing service’s unique identity and an element name
representing the service’s name.

6 QUERY PLAN DECOMPOSITION

Because each data sharing service only needs to know its
related data integration operations, but the query plan
graph G contains the information about all data sharing

services, the query plan wrapper should decompose G and
send only the query plan subgraphs to their corresponding
data sharing services. It reduces the system communication
overhead as well as every data sharing service’s computa-
tion overhead on parsing the query plan.

From a given query plan graph G ¼ ðV ;E;CÞ with
m nodes, the Decompose Algorithm (Algorithm 1) will
construct a subgraph Gi for each node vi by extracting vi’s
adjacent nodes and corresponding edges and the labels
attached to these edges from G. Furthermore, Algorithm 1
assigns a random number to each edge. Although each edge
will appear in the subgraphs for both its head and tail
nodes, Algorithm 1 assigns the same random number to the
edge in both subgraphs it appeared.

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2008

Fig. 2. The query plan graph of the motivating example.

Fig. 3. The DTD schema of the query plan specification language
(QPSL).

We denote the subgraph Gi of vi as ðVi; Ei; Ci; riÞ, where
Vi consists of all vi’s adjacent nodes, Ei all the adjacent
edges, Ci all the labels attached with Ei, and ri contains all
random numbers assigned to Ei. Hence, Gi represents all
data integration operations of the data sharing service
represented by vi.

7 CONTEXT-AWARE DATA SHARING

In Algorithm 1, the query plan graph G is decomposed to a
set of subgraphs. For each data sharing service, its
subgraph Gi consists of the information about other data
sharing services whose data will be integrated with its own
data and how the data will be integrated together. Hence,
we call the subgraph of vi the context of the data sharing
service of vi in current G. Because data sharing services are
aware of its context in the whole data integration process,
they can determine which information should be shared
and how to limit the usage of the shared data.

In this section, we will present a Context-Aware Data
Sharing Algorithm to help data sharing services share
information with the repository. We will focus on the
matching operations to determine whether two records are
matched according to the equality test between their
attribute values.

Basically, the matching between two data records can al-
ways be replaced by the matching between their hash
values. Hash functions’ low conflict probability ensures the
correctness of the hash-based matching and hash functions’
one-way property enables a third party to match two data
records without revealing their values. Thus, the hash
function is a simple solution for privacy preserving data
matching. However, with two records’ hash values, the two
records can always be matched by anyone, which makes
the hash-based matching inappropriate in certain cases,
such as the privacy preserving data storage application
proposed in [27] and the privacy preserving e-mail routing
application proposed in [11], where only the authorities can
match the shared data.

As mentioned before, when data sharing and integration
are across various organizations without a central authority,
the restriction on matching capability is stronger in the
following aspects:

Requirement 1. The repository can match two data
sharing services’ data only if these two services’ data is
required to be matched by the user’s integration requests.

Requirement 2. When the user’s integration requests
require matching between vi’s data and tmp, where tmp is
the result of matching between two other services vj and vk,
the repository cannot match vi’s data with the data of vj or
vk if the data of vj or vk is not in tmp.

To enforce the above restrictions, our Context-Aware Data
Sharing Algorithm shares data in the following two steps:

1. For each edge ðvi; vjÞ of G, vi and vj share their data
with the random number r assigned in Algorithm 1
to ensure that our repository can match their data,
but cannot use their shared information to match
other nodes’ data.

2. Node vj computes the random factor R to further
randomize its shared information to ensure that only
vj’s data matching vi’s data can be used to match vk’s
data, when ðvj; vkÞ is one of vj’s out-edges in G.

Our Context-Aware Data Sharing Algorithm is given in
Algorithm 2, and the shared data of our motivating example
is listed in Table 3 as an example of the algorithm’s output.

In the following sections, we will show that Algorithm 2
satisfies both Requirement 1 and Requirement 2.

7.1 Requirement 1

If the user’s integration request requires matching between
two services’ data, there should be an edge between these
two services in the corresponding G. Hence, to show that
Algorithm 2 satisfies Requirement 1, we only need to prove
that the information shared by each edge’s head node and
tail node can only be used by our repository to match their
own data according to the edge label.

To show how Algorithm 2 satisfies Requirement 1,
consider the simple query plan subgraph for node v shown
in Fig. 4, where v shares the information about rec to our
repository to match rec with the data of i1, i2, and o1

according to v’s in-edges and out-edges. Specifically, v
computes I1 ¼ H1ðr1; v1;1Þ and I2 ¼ H1ðr2; v1;2Þ for the two
in-edges and O1 ¼ H1ðr3; v1;3Þ for the out-edge, where r1, r2,
and r3 are three random numbers assigned to edges ði1; vÞ,
ði2; vÞ, and ðv; o1Þ in Algorithm 1. Similarly, i1 and i2 will

YAU AND YIN: A PRIVACY PRESERVING REPOSITORY FOR DATA INTEGRATION ACROSS DATA SHARING SERVICES 5

share information according to their out-edges, and o1 will

share information according to its in-edge. All shared

information is depicted in Fig. 4. Because Algorithm 1

assigns random numbers r1, r2, and r3 independently and

only the repository knows them, only the repository can use

the shared information to match v’s data with i1, i2, and o1’s

data. Furthermore, because each edge’s head node and tail

node use the same random number to share information,

our repository can only use I1 and I2 to match i1 and i2’s
data and use O1 to match o1’s data.

The above results can be stated in the following theorem,
and the proof is given in the Appendix:

Theorem 1. Let rec1 and rec2 be v1 and v2’s records, respectively.
Let r be the random number assigned to edge ðv1; v2Þ. Our
repository matching rec1’s attribute attr1 with rec2’s attribute
attr2 using Algorithm 2 has the following properties:

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2008

TABLE 3
The Five Sets of Randomized Data According to Fig. 2 and Algorithm 2

(a) RDs. (b) RD1. (c) RD2. (d) RD4. (e) RD3.

Fig. 4. A subgraph generated by Algorithm 1.

1. Correctness. If rec1:attr1 matches rec2:attr2, their
hash values H1ðr; rec1:attr1Þ and H1ðr; rec2:attr2Þ
also match.

2. Robustness. If the hash values H1ðr; rec1:attr1Þ
matches H1ðr; rec2:attr2Þ, rec1:attr1 and rec2:attr2

will match with large probability.
3. Independence. The hash values H1ðr; rec1:attr1Þ and

H1ðr; rec2:attr2Þ are independent from the informa-
tion shared for other edges, and, hence, they can only
be used for the matching between rec1:attr1 and
rec2:attr2.

7.2 Requirement 2

For a record rec of v, rec is said to pass the evaluation of v’s

in-edges if and only if there is a record rec0 2 i matching rec

successfully for any v’s in-edge ði; vÞ. Hence, to show that

Algorithm 2 satisfies Requirement 2, we only need to prove

that, for an edge ðvi; vjÞ, the information shared by vi about

its record rec can be used by our repository to match vj’s

data only when rec passes the evaluation of vi’s in-edges.
We still use the subgraph shown in Fig. 4 to show how

Algorithm 2 satisfies Requirement 2. First, v collects all of its

attributes specified in the labels of in-edges as AttrIn ¼
fattr1; attr2g and then computes the random factor R as

H2ðr1; v1;1Þ �H2ðr2; v1;2Þ for record rec, where H2ðr1; v1;1Þ is

shared by i1 for rec1 and H2ðr2; v1;2Þ is shared by i2 for rec2.

Then, v randomizes its shared information for the out-edge

ðv; o1Þ with the random factor R as O1 ¼ fH1ðr3; v1;3Þ �
R;H2ðr3; v1;3Þ �Rg if o1 is not the sink node t; otherwise,

O1 ¼ fEpkðr3; v1;3Þ �Rg. Hence, the repository has to first

remove the random factor R from O1 before it can use the

information O1 to evaluate v’s out-edge, which in turn

requires that rec pass the evaluation of both ði1; vÞ and

ði2; vÞ. The above results can be stated in the following

theorem, and the proof is given in the Appendix:

Theorem 2. Let ðv1; v2Þ match v1’s attribute attr1 with v2’s

attribute attr2. Let rec1 be a record of v1. With the random

factor R1 computed by Algorithm 2 and the random number r

assigned for ðv1; v2Þ by Algorithm 1, v1 shares ðO1; O2Þ as the

information about rec1, where O1 ¼ H1ðr; rec1:attr1Þ �R1

and O2 ¼ H2ðr; rec1:attr1Þ �R1. Our repository can remove

the random factor R1 from ðO1; O2Þ if and only if the following

two conditions are satisfied:

. Cond. 1. All ðv1; v2Þ’s precedent edges have been
evaluated.

. Cond. 2. The record rec1 should pass the evaluation of
v1’s in-edges.

8 DATA INTEGRATION

When our repository receives the shared information from

all data sharing services, the repository should follow the

query plan graph G and integrate the received information

together to compute the integration results for the user. In

this section, we will present the integration process as the

Integration Algorithm (Algorithm 3).

Intuitively, this algorithm starts from the source node s
and navigates all edges to match the information shared by
each edge’s head and tail nodes in the partial order
specified by G. The algorithm will arrive at the sink node t
and output the final result of the whole query plan. The
most important part of this algorithm is the Match function,
which is explained here with the matching of RD1 and RD2

in Table 3 as an example:

. Initialize. Before the repository REP evaluates an
edge, it first retrieves the edge’s label information
from G to find out which attributes are to be
matched. Meanwhile, REP collects all attributes
shared by the edge tail node for its own out-edges as
AttrOut. In our example, the edge is to match
RD2:pattern with RD1:pattern, and RD2 has only
one attribute in its out-edge. Hence, we have
AttrOut ¼ RD2:ssn.

. Match. In this step, REP scans and matches tail
nodes’ records with the records from head nodes. In
our example,REP matchesRD2’s records withRD1’s
records according to their attribute pattern. LetRD1’s
records be reci and RD2’s records be rec0i, where
1 � i � 4. Recall that RD2’s record rec0i passes the
evaluation of the edge fromRD1 toRD2 only if there is
a record recj 2 RD1 that recj:pattern ¼ rec0i:pattern.
According to Table 3, the first three records of RD2

pass the evaluation, and the last one fails.
. Remove random factors. Assume that the edge’s tail

node’s record rec passes the evaluation of the edge.
To use rec to evaluate the tail node’s out-edges, REP

YAU AND YIN: A PRIVACY PRESERVING REPOSITORY FOR DATA INTEGRATION ACROSS DATA SHARING SERVICES 7

first needs to remove random factors from the
shared information about rec for all attr 2 AttrOut.
In our example, only the first three records of RD2

passed the evaluation and there is only one attribute
ssn 2 AttrOut. Therefore, the random factors can
only be removed from the first three records
according to Theorem 1. The last record’s random
factor cannot be removed and be further used for
consequent matching.

. Collect outputs. If the edge’s tail node is the sink
node t, REP collects the outputs of the whole query
plan in this step. For example, if RD2 is the sink
node t, REP will output the first three records’
encrypted ssn into FinalRes.

9 PERFORMANCE EVALUATION

In this section, we analyze the performance of our

algorithms and conduct extensive experimental evaluation.

To evaluate the performance of our algorithms, we

construct different size data sets from the real adult

income database (available at http://archive.ics.uci.edu/

ml/datasets/Adult), which contains a table with roughly

30;000 records.
We constructed nine different size data sets by extracting

the adult income database’s first 100, 500, 1;000, 5;000,

10;000, 15;000, 20;000, 25;000 and 30;000 records. For each

data set, we developed a data sharing service to share the

data set. All shared data will be represented, stored, and

exchanged as XML documents using the DTD schema

depicted in Fig. 5, where r is the random number assigned

by Algorithm 1 for edges, comparison is the operation

specified by the edge’s label, random factor is the random

factor computed in Algorithm 2, and a and b are two

parameters of the public encryption scheme [13]. All XML

documents will be parsed with XQuery [3].

Because our experiment focuses on the performance

evaluation, we only need to develop a simple query plan

s ���������!¼;}l};education
d ��������������!¼;native�country;null

t, which has an in-edge

from the source node to the data sharing service node d

matching the user’s input l with the data sharing service’s

attribute education, and one out-edge from the data service

node d to t outputting the attribute native� country. When

the user changes his input l, this query plan studies the

native countries of adults who have the education level

from 11th, HS � grad to Bachelor. While HS � grad and

Bachelor represent the highest selectivity 0:3 and the lowest

selectivity 0:03, respectively, 11th has the average selectivity

0:16 in all education levels.
We conducted our experiments on a 3GHz Pentium 4

Processor running Windows XP with 2GB RAM. We chose
C++ to implement the experiments in Microsoft Visual
Studio 2005 with the Xerces 2.8.0 library (available at
http://xerces.apache.org) for the creating and parsing of
XML documents and the Crypto++ 5.5.2 library (available at
http://www.cryptopp.com) for the implementation of hash
functions and the public encryption scheme [13]. We also
used MySQL to store data and handle data queries.

9.1 Context-Aware Data Sharing

As discussed in Section 7, the context-aware data sharing
limits the usage of shared data within the specified context,
i.e., the data sharing service node’s in-edges and out-edges,
and only reveals the information essential for the evaluation
of these edges. Suppose a data sharing service has n1 in-
edges, n2 out-edges for all its subsequent operations, and
n3 out-edges directed to the sink node t for the final result.
Assume that the times for a hashing operation and an
encryption operation are th and te, respectively. According
to Algorithm 2, the time for context-aware data sharing of
this data sharing service is Oððn1 þ n2ÞthNÞ þOðn3teNÞ,
whereN is the number of records shared by the data service.

Fig. 6 shows our experimental result, where the data
sharing service has one in-edge from the source node s and
one out-edge for the final result, and N ranges from 100 to
30; 000. In this context, the expected time is OðthN þ teNÞ,
which is proportional to N . This expected time is verified by
the experimental result. When N is 30;000, the data sharing
service can complete data sharing within about 300 seconds.
Note that only data sharing services which have out-edges
to the sink node t need to encrypt their data. Most data
sharing services, whose data are only used for further

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2008

Fig. 5. The DTD schema of the shared data.

Fig. 6. The performance of Context-Aware Data Sharing Algorithm.

integration, only need hashing operations, which are much
faster than encryption operations.

9.2 Integration

The data integration is executed based on the edges in G.
For an edge with the head node v1 and the tail node v2, the
integration based on that edge will match v2’s records with
v1’s records. Suppose v1 has N1 records and v2 has
N2 records in which p percent will match v1’s records
successfully. According to Algorithm 3 and the discussion
in Section 8, the integration time for the edge ðv1; v2Þ is
OðN1N2=pÞ.

Fig. 7 shows our experimental result, where the data
service has an in-edge from the source node s and an out-
edge for the final result, and N ranges from 100 to 30;000.
When N is 30;000, REP can complete data integration
within around 600 seconds with selectivity 0:3. When the
selectivity drops to 0:03, the time reduces to around
50 seconds.

9.3 Decryption

The estimation for the time for the decryption is relatively
easy. It depends on the number of records in the final result
and the decryption time of the encryption scheme. Suppose
the final result contains N records and the time for one
decryption operation is td. The whole decryption time will
be OðNtdÞ.

In our experiment, although we chose different attri-
butes with various selectivities for data integration, Fig. 8
shows that the time is proportional to the data size. For
instance, with the attribute HS � grad and a data set with
30;000 records, there are around 9;000 records in the final
result which can be decrypted by users within 600 seconds.

10 RELATED WORK

10.1 Searchable Encryption Schemes

In [11], [27], a symmetric searchable encryption scheme
and an asymmetric searchable encryption scheme are
proposed to store users’ data in a third party. These
schemes conceal users’ data from the third party and
enable the third party to match data with users’ searching
requests and return the matched data to users. To satisfy
these two seemingly contradictory requirements, both [11],

[27] introduce additional private information (i.e., a
symmetric key in [27] and an asymmetric key in [11]) to
manipulate the original data or its hash values. Following
[11], [27], many improved approaches have been proposed
[1], [9], [12], [14], [26]. However, all of these approaches
only focus on how to control the third party’s search
capability between two parties. Because some integration
applications in our repository require data from more than
two data sharing services, our repository may need to
integrate multiple data sets provided by various data
sharing services.

10.2 Privacy Preserving Query Processing

Much research has been done on the design of efficient
privacy preserving query processing techniques [6], [7],
[10], [15], [16], [22], [25], [28]. The basic idea of these
approaches is to execute queries on cryptographically or
noncryptography manipulated data. Although the assump-
tions and goals of these approaches vary greatly, all of them
suffer from two shortcomings: 1) Existing techniques only
include the evaluation for one query and do not consider
the role of the query’s output in the whole application.
2) They also do not consider the inferential relations among
different queries in one application. These shortcomings
make them unsuitable to be used in a complex data
integration application that needs to process a set of queries
in a given partial order.

10.3 Secure Multiparty Computation

Besides existing privacy preserving query processing
techniques, a technique named secure multiparty computa-
tion [17], [24] can handle any data integration requirements.
Generally speaking, any data integration application can be
modeled as a multiparty function that accepts inputs from
data sharing services and only releases the final result to the
user. However, it needs to represent functions as garbled
circuits, which typically require huge numbers of gates and,
hence, introduce excessive overhead.

11 CONCLUSION

In this paper, we have presented a privacy preserving
repository to integrate data from various data sharing
services. In contrast to existing data sharing techniques, our

YAU AND YIN: A PRIVACY PRESERVING REPOSITORY FOR DATA INTEGRATION ACROSS DATA SHARING SERVICES 9

Fig. 7. The performance of Integration algorithm. Fig. 8. The performance of decryption.

repository only collects the minimum amount of informa-
tion from data sharing services based on users’ integration
requests, and data sharing services can restrict our
repository to use their shared information only for users’
integration requests, but not other purposes.

Although in this paper we have only focused on
matching operations, our repository can be easily extended
to support SUM and AVG aggregate operations with
additive homomorphic encryption schemes, like the Paillier
encryption scheme [23]. The experimental results show that
our algorithms possess linear complexity and can be
completed within reasonable time even when the data set
have 30;000 records.

Future research along this topic includes how to extend
the expressiveness of our specification language, enable
our repository to support more types of data integration
operations, and improve of our repository’s performance
for much larger scale of data size. A possible approach for
performance improvement is to enable the precomputation
of data, which allows the data sharing services to obtain
some preliminary information about their data for accel-
erating data sharing.

In this paper, we assume that our repository can access
all shared data and focus on how data sharing services
share data for specific data integration requests to prevent
our repository from using the shared data for other
purposes. Future research is needed to investigate the
behavior of our repository when there are conflicts among
data sharing services’ policies on the shared data. A
possible solution to this problem is to use the policy
reconciliation technique in [29].

APPENDIX A

PROOF OF THEOREM 1

Proof. The proof of correctness is straightforward because
the hash function H1 is deterministic, which always
generates the same output for the same input.

The robustness comes from the collision resistance
property of hash functions. That is, for a hash function,
the probability that two different inputs have the same
hash values does not exceed the hash function’s conflict
probability p0, which is usually negligible.

To show the independence, consider a third node v3

with record rec3 and attribute attr3. The repository
cannot use H1ðr; rec1:attr1Þ shared by v1 to check
whether rec1:attr1 ¼ rec3:attr3 with large probability.
Suppose the random number assigned for v3 is r0 and
the hash function H1’s confliction probability is p0. Then,
if rec1:attr1 6¼ rec3:attr3, the probability that their hash
values match does not exceed p0 because of hash
function’s collision-resistance property. In another case,
if rec1:attr1 ¼ rec3:attr3, because r and r0 are two
independent random numbers, there are two possible
causes for the event H1ðr; rec1:attr1Þ ¼ H2ðr0; rec3:attr3Þ.
First, the event may occur if r0 ¼ r whose probability
does not exceed 1=2jrj. Second, the event may occur when
the hash value collides whose probability does not
exceed p0. Thus, the overall probability of the event does
not exceed p0 þ 1=2jrj, which is still negligible. tu

APPENDIX B

PROOF oF THEOREM 2

Proof. First, we prove that the two conditions Cond1 and

Cond2 are necessary for removing R1.
If Cond1 is not satisfied, suppose the edge ði1; i2Þ is

one of ðv1; v2Þ’s precedent edges and has not
been evaluated. Because ði1; i2Þ � ðv1; v2Þ, there should
be a series of edges that satisfies ði1; i2Þ � � � � �
ðim; v1Þ � ðv1; v2Þ, where ðij; ijþ1Þ is the direct precedent
of ðijþ1; ijþ2Þ. We assume that ði1; i2Þ matches i1’s
attribute attri1 with i2’s attribute attri2, and i2’s record
reci2 is randomized by the random factor Ri2 ¼
H2ðri1; reci2:attri2Þ �R0i2, where ri1 is the random num-
ber assigned to ði1; i2Þ and R0i2 is the remaining part of
the random factor computed according to i2’s other in-
edges. Hence, to remove Ri2, our repository must
compute H2ðri1; reci2:attri2Þ first. However, without
evaluating ði1; i2Þ, the best information that our reposi-
tory possesses is H2ðri1; reci1:attri1Þ �Ri1 from node i1,
where Ri1 is the random factor of i1 for its record reci1,
which does not reveal any information related to
H2ðri1; reci2:attri2Þ even when reci1:attri1 ¼ reci2:attri2,
because i1’s random factor Ri1 is unknown. Conse-
quently, our repository cannot evaluate ði2; i3Þ without
evaluating ði1; i2Þ first because i2’s random factor Ri2 is
unknown. Recursively, our repository cannot evaluate
ðv1; v2Þ without evaluating ðim; v1Þ first.

If Cond1 is satisfied, but Cond2 is not satisfied, i.e., for
one in-edge ðvj; v1Þ of v1, there is no record recj 2 vj
satisfying that recj:attr

0
j ¼ rec1:attrj. In this case, our

repository cannot learn H2ðrj; rec1:attrjÞ from the in-
formation shared by vj and, therefore, cannot learn and
remove v1’s random factor R1 from ðO1; O2Þ, where rj is
the random number assigned for ðvj; viÞ. Thus, both
Cond1 and Cond2 are necessary for removing R1.

Now, we will prove that the conditions Cond1 and
Cond2 are sufficient for removing R1 through math-
ematical induction on the number of ðv1; v2Þ’s pre-
cedent edges.

When the edge ðv1; v2Þ has no precedent edges, Cond1
and Cond2 are obviously satisfied. In this case, according
to Algorithm 2, the set AttrIn is empty and the random
factor R1 ¼ 0. As a result, our repository can remove R1

from ðO1; O2Þ trivially.
Assume that Cond1 and Cond2 are sufficient for

removing R1 when the number of the edge ðv1; v2Þ’s
precedent edges does not exceed n.

When ðv1; v2Þ has n precedent edges and n > 1, we
denote v1’s in-edges as fðvj; v1Þ; 3 � j � mg, where
ðvj; v1Þ matches v1’s attribute attrj with vj’s attribute
attr0j. First, when Cond1 is satisfied, for each edge ðvj; v1Þ,
its precedent edges should have been evaluated. Second,
all records of vj satisfying Cond2 should have passed the
evaluation of vj’s in-edges. Furthermore, because all vj’s
precedent edges and ðvj; v1Þ itself are v1’s precedent
edges, the number of vj’s precedent edges cannot exceed
n� 1. According to the induction assumption, our
repository can remove vj’s random factors from the
information shared by vj for ðvj; v1Þ. That is, our
repository can compute ðO1;j; O2;jÞ ¼ ðH1ðrj; recj:attr0jÞ;

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 1, NO. 3, JULY-SEPTEMBER 2008

H2ðrj; recj:attr0jÞÞ if the record recj 2 vj satisfies Cond2,
where rj is the random number assigned to ðvj; v1Þ. Note
that v1’s random factor is R1 ¼

Lm
j¼3 H2ðrj; rec1:attrjÞ,

where r3; � � � ; rm are the random numbers assigned to
v1’s in-edges ðv3; v1Þ; � � � ; ðvm; v1Þ. If v1’s record rec1

satisfies Cond2, for each in-edge ðvj; v1Þ, there should
be a record recj 2 vj satisfying rec1:attrj ¼ recj:attr0j.
Furthermore, from the information shared by vj for its
record recj, our repository learns ðO1;j; O2;jÞ, where
H2ðrj; rec1:attrjÞ ¼ O2;j. Hence, our repository can com-
pute v1’s random factor as R1 ¼

Lm
j¼3 O2;j, and remove it

from ðO1; O2Þ. tu

ACKNOWLEDGMENTS

This work was supported by the US National Science

Foundation under grant number ITR-CYBERTRUST

0430565.

REFERENCES

[1] Web Services Business Process Execution Language Version 2.0,
OASIS Standard, http://docs.oasis-open.org/wsbpel/2.0/
wsbpel-v2.0.pdf, 2007.

[2] DTD Schema, http://www.w3.org/TR/REC-xml/#dt-doctype,
2008.

[3] XQuery, http://www.w3.org/TR/xquery, 2007.
[4] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J.

Malone-Lee, G. Neven, P. Paillier, and H. Shi, “Searchable
Encryption Revisited: Consistency Properties, Relation to Anon-
ymous IBE, and Extensions,” Advances in Cryptology (CRYPTO
’05), vol. 3621, pp. 205-222, 2005.

[5] S. Adali, K.S. Candan, Y. Papakonstantinou, and V.S. Subrahma-
nian, “Query Caching and Optimization in Distributed Mediator
Systems,” Proc. ACM Int’l Conf. Management of Data (SIGMOD ’96),
pp. 137-148, 1996.

[6] R. Agrawal, A.V. Evfimievski, and R. Srikant, “Information
Sharing across Private Databases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data (SIGMOD ’03), pp. 86-97, 2003.

[7] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order-Preserving
Encryption for Numeric Data,” Proc. ACM Int’l Conf. Management
of Data (SIGMOD ’04), pp. 563-574, 2004.

[8] Y. Arens, C.A. Knoblock, and W. Shen, ”Query Reformulation for
Dynamic Information Integration,” J. Intelligent Information Sys-
tems, vol. 6, no. 2, pp. 99-130, 1996.

[9] J. Baek, R. Safavi-Naini, and W. Susilo, ”On the Integration of
Public Key Data Encryption and Public Key Encryption with
Keyword Search,” Proc. Ninth Information Security Conf. (ISC ’06),
vol. 4176, pp. 217-232, 2006.

[10] M. Bellare, A. Boldyreva, and A. O’Neill, ”Deterministic and
Efficiently Searchable Encryption,” Advances in Cryptology (CRYP-
TO ’07), vol. 4622, pp. 535-552, 2007.

[11] D. Boneh, G.D. Crescenzo, R. Ostrovsky, and G. Persiano, ”Public
Key Encryption with Keyword Search,” Advances in Cryptology
(EUROCRYPT ’04), vol. 3027, pp. 506-522, 2004.

[12] D. Boneh and B. Waters, ”Conjunctive, Subset, and Range Queries
on Encrypted Data,” Proc. Theory of Cryptography Conf. (TCC ’07),
vol. 4392, pp. 535-554, 2007.

[13] E. Bresson, D. Catalano, and D. Pointcheval, ”A Simple Public-Key
Cryptosystem with a Double Trapdoor Decryption Mechanism
and Its Applications,” Advances in Cryptology (ASIACRYPT ’03),
vol. 2894, pp. 37-54, 2003.

[14] R. Curtmola, J.A. Garay, S. Kamara, and R. Ostrovsky, ”Searchable
Symmetric Encryption: Improved Definitions and Efficient Con-
structions,” Proc. ACM Conf. Computer and Comm. Security (CCS
’06), pp. 79-88, 2006.

[15] F. Emekci, D. Agrawal, A.E. Abbadi, and A. Gulbeden, ”Privacy
Preserving Query Processing Using Third Parties,” Proc. 22nd Int’l
Conf. Data Eng. (ICDE ’06), p. 27, 2006.

[16] T. Ge and S.B. Zdonik, ”Answering Aggregation Queries in a
Secure System Model,” Proc. 33rd Int’l Conf. Very Large Data Bases
(VLDB ’07), pp. 519-530, 2007.

[17] O. Goldreich, Foundations of Cryptography Volume II Basic Applica-
tions. Cambridge Univ. Press, 2001.

[18] Z.G. Ives, D. Florescu, M. Friedman, A.Y. Levy, and D.S. Weld,
”An Adaptive Query Execution System for Data Integration,”
Proc. ACM Int’l Conf. Management of Data (SIGMOD ’99), pp. 299-
310, 1999.

[19] K.P. Fischer, U. Bleimann, W. Fuhrmann, and S.M. Furnell,
”Security Policy Enforcement in BPEL-Defined Collaborative
Business Processes,” Proc. 23rd Int’l Conf. Data Eng. Workshop,
pp. 685-694, 2007.

[20] N. Kushmerick, D.S. Weld, and R.B. Doorenbos, ”Wrapper
Induction for Information Extraction,” Proc. Int’l Joint Conf.
Artificial Intelligence, pp. 729-737, 1997.

[21] A.Y. Levy, A. Rajaraman, and J.J. Ordille, ”Querying Hetero-
geneous Information Sources Using Source Descriptions,” Proc.
22th Int’l Conf. Very Large Data Bases (VLDB ’96), pp. 251-262, 1996.

[22] Y. Lindell and B. Pinkas, ”Privacy Preserving Data Mining,” J.
Cryptology, vol. 15, no. 3, pp. 177-206, 2002.

[23] P. Paillier, ”Public-Key Cryptosystems Based on Composite
Degree Residuosity Classes,” Advances in Cryptology (EURO-
CRYPT ’99), vol. 1592, pp. 223-238, 1999.

[24] B. Pinkas, ”Cryptographic Techniques for Privacy-Preserving
Data Mining,” SIGKDD Explorations, vol. 4, no. 2, pp. 12-19, 2002.

[25] M. Scannapieco, I. Figotin, E. Bertino, and A.K. Elmagarmid,
”Privacy Preserving Schema and Data Matching,” Proc. ACM Int’l
Conf. Management of Data (SIGMOD ’07), pp. 653-664, 2007.

[26] E. Shi, J. Bethencourt, H.T.-H. Chan, D.X. Song, and A. Perrig,
”Multidimensional Range Query over Encrypted Data,” Proc.
IEEE Symp. Security and Privacy (S&P ’07), pp. 350-364, 2007.

[27] D.X. Song, D. Wagner, and A. Perrig, ”Practical Techniques for
Searches on Encrypted Data,” Proc. IEEE Symp. Security and
Privacy (S&P ’00), pp. 44-55, 2000.

[28] L. Xiong, S. Chitti, and L. Liu, ”Preserving Data Privacy for
Outsourcing Data Aggregation Services,” ACM Trans. Internet
Technology, vol. 7, no. 3, pp. 17-45, 2007.

[29] S.S. Yau and Z. Chen, ”Security Policy Integration and Conflict
Reconciliation for Collaborations among Organizations in Ubiqui-
tous Computing Environments,” Proc. Fifth Int’l Conf. Ubiquitous
Intelligence and Computing, pp. 3-19, 2008.

[30] B. Yu, G. Li, K.R. Sollins, and A.K.H. Tung, ”Effective Keyword-
Based Selection of Relational Databases,” Proc. ACM Int’l Conf.
Management of Data (SIGMOD ’07), pp. 139-150, 2007.

Stephen S. Yau received the PhD degree in
electrical engineering from the University of
Illinois, Urbana. He is currently the director of
the Information Assurance Center and a profes-
sor in the Department of Computer Science and
Engineering, School of Computing and Infor-
matics at Arizona State University, Tempe. He
served as the chair of the department from 1994
to 2001. He was previously with the University of
Florida, Gainesville, and Northwestern Univer-

sity, Evanston, Illinois. He served as the president of the IEEE Computer
Society and as the editor-in-chief of Computer magazine. His current
research is in distributed and service-oriented computing, adaptive
middleware, software engineering and trustworthy computing, and data
privacy. He is a fellow of the IEEE and the American Association for the
Advancement of Science.

Yin Yin received the BS degree in mathematics
from Wuhan University, China, and the MS
degree in computer science from the Chinese
Academy of Science. He is a PhD student in the
Department of Computer Science and Engineer-
ing at Arizona State University, Tempe. His
research interests include privacy protection,
trustworthy computing, and cryptography.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YAU AND YIN: A PRIVACY PRESERVING REPOSITORY FOR DATA INTEGRATION ACROSS DATA SHARING SERVICES 11

