

Functionality-Based Service Matchmaking for Service-Oriented Architecture

Stephen S. Yau and Junwei Liu
Arizona State University

Tempe, AZ 85287-8809, USA
{yau, junwei.liu}@asu.edu

Abstract
Service matchmaking is a basic feature of Service-
Oriented Architecture (SOA). In this paper, a
semantic-based flexible service matchmaking approach
is presented to efficiently identifying functionality-
compatible services. This approach utilizes SAW-
OWL-S to specify the service advertisements and
service discovery requests. The functionality-
compatibility of a service to a request is defined on
their parameters and conditions. This approach uses
functionality filtering to prune out incompatible
services, and then select services based on the
aggregated similarities of input/output parameters,
precondition/result situations and other service
attributes. Experimental results are given to illustrate
that this approach can efficiently generate precise
service matchmaking results.

Keyword: Service-oriented architecture, service
matchmaking, context and situation, service
functionality, functionality-compatibility.

1. Introduction
Service-Oriented Architecture (SOA) [1] enables rapid
composition of distributed applications from services
in a flexible and agile manner, and has become the
new-generation computing architecture for many large-
scale distributed systems in various application areas,
such as scientific collaboration, e-business, health care,
military, and homeland security. A service is a well-
defined and self-contained software entity with a
discoverable and invocable interface to provide certain
functionality over networks using standard protocols.
Various services can interoperate with each other,
regardless of the programming languages and
platforms used. The independency and interoperability
of services make SOA a suitable architecture for
Autonomous Decentralized Systems. Various service
providers, service requestors and service directories
collaborate in SOA. Service providers publish service

advertisements in the service directories; service
directories handle service discovery requests by
identifying suitable services matching the requests.
Precise and efficient service matchmaking is a basic
and important feature of SOA.

A good service matchmaking approach must find the
service best matching the service request. There are
two important issues involved in this approach: How
to specify the functionality of the services semantically;
and how to understand such semantic specifications
and match services semantically. Traditional service
matchmaking approaches are based on syntactical
matching on the textual description of service names
and properties, and hence they lack semantic
considerations for supporting semantic-based service
matchmaking. Although there are no available ways of
interpreting the full semantics of services, there have
been great improvements in semantic service
specification languages, such as WSDL [2], OWL-S
[3], and SAW-OWL-S [4]. With such improvements,
there have been approaches for matching services
based on the semantics of input and output parameters
of the services. However, considering only the
semantics of the input/output parameters is not
sufficient to generate precise matching results due to
the following reasons: First, for many services, the
input and output parameters do not clearly represent
the functionality provided by the service. For example,
many services will return a Boolean value to indicate
whether the service is executed successfully. In such a
case, the output parameter cannot differentiate services
with different functionalities. The semantics of
services’ results can help the differentiation in such a
case. Secondly, the match of the input and output
parameters does not guarantee the service can be
successfully used by the requestor. In dynamic SOA-
based systems, the execution of a service that meets
the service requestor’s expectation must also satisfy
certain preconditions and provide the expected results.

To solve these two problems, a service
matchmaking approach based on service functionalities,
called F-Match, will be presented in this paper. F-

Match utilizes SAW-OWL-S [4], which extends
OWL-S with situation ontology [5], as the semantic
specification language for services. SAW-OWL-S
extends OWL-S with the semantic-based preconditions
and postconditions specification using situations. A
situation is a set of contexts in the application over a
period of time that affects future system behavior. A
context is any instantaneous, detectable, and relevant
property of the environment, the system, or users, such
as location, available bandwidth and a user’s schedule
[6, 7]. Our approach will provide precise and efficient
service matchmaking based on service parameters,
conditions and attributes. The experimental results on
evaluating the efficiency and matching accuracy of our
approach will also be presented

2. Current State of the Art
Many Service Discovery Protocols (SDPs) have been
developed. Among them, Jini [8], SLP (Service
Location Protocol) [9], Salutation [10], UPnP
(Universal Plug and Play) [11], and Bluetooth [12] are
five main approaches. Various service matchmaking
approaches are supported in these SDPs. In Jini,
service matchmaking is based on the interface type of
services written in Java or the specific value of service
attributes. SLP supports service matchmaking on
service attributes and service types. Salutation does not
support service attributes based matchmaking directly.
In UPnP, the XML service descriptions are used.
Bluetooth also supports service matchmaking based on
service types and attributes. All these approaches are
based on syntactical level matching of the text
description of service interfaces, types or attributes.

The Universal Description, Discovery and
Integration (UDDI) project [13] is an industry
initiative of service discovery, and supports syntactical
keyword matching of the name of the businesses, Web
services and TModels. Paolucci et al. [14] extended the
UDDI with the semantic matching of Web services
based on the subsumption relations between their
capabilities specified by ontology concepts of
input/output parameters using DAML-S. Sirin et al.
[15] presented the input/output parameter-based
service filtering and selection based on OWL-S
specification. The overall structure of OWL-S [3]
(formally DAML-S) includes three main parts: the
service profile for advertising and discovering services;
the process model, which gives a detailed description
of a service's operation, including the IOPE (Input,
Output, Precondition, and Effect) parameters of the
process; and the grounding, which provides the details
on how to interoperate with a service, via messages.
These two semantic matching approaches [14, 15] are
solely based on the concept taxonomy of input/output
parameters of services, and do not differentiate the

matching services with different
precondition/postcondition specifications as mentioned
before. In our approach, we include the consideration
of these service conditions during matchmaking by
incorporating service functionality filtering and
matching based on both the input/output parameters
and precondition/result situations.

3. Requirements for Service Matchmaking
SOA involves a large number of services with various
functionalities, which can be discovered and used to
compose distributed applications dynamically. In order
to select services that can be successfully used to
achieve the requestor’s goal; the underlying service
matchmaking mechanism must satisfy the following
requirements:

 Semantic matchmaking
Traditional syntactical service matchmaking
approaches encounter serious difficulties in service
adequate environment, especially when multiple
parties are involved. This is due to the absence of a
unified understanding of the semantics carried by the
syntactical service specifications among multiple
parties. For example, although the words “car” and
“vehicle” have similar semantics, they are totally
different at syntactical-level. On the other hand, the
word “paper” may be used to describe both a service to
browse scientific research papers and a service to sell
printing paper. With the development of semantic
service specification languages, it is possible for
multiple parties in SOA to share and exchange
semantics of services with a unified common ground.
The service matchmaking mechanism should try to
maximally explore the semantics carried in service
specifications and select services based on the unified
semantics.

 Flexible matchmaking
Basically, the service matchmaking mechanism
answers the question, “Whether this service
advertisement matches this service discovery request?”
In a service adequate environment, the binary “match”
and “not match” results will not work because there
will be a very good chance that multiple services will
provide similar functionalities that all these services
“match” the request. Instead of returning all these
services as the generated results and burdening service
requestors to select the most suitable service, the
service matchmaking mechanism should further
distinguish similar services on how well the services
match the request.

 Functionality matchmaking
Although it is important for the service matchmaking
engine to provide a flexible matching schema, there
should still be some “hard” guidelines for selecting
services during the matchmaking process. The top

priority guideline should be “The discovered service
must be usable to the service requestor”, which means
its functionality should be compatible with the requests.
The service matchmaking mechanism must be able to
categorize the services into “compatible” and
“incompatible” classes for each service discovery
request based on their functionalities and only return
the compatible services as the results.

 Efficient matching
Efficiency is always an important requirement in SOA.
The service matchmaking mechanism must not cause
too much computation and communication burden on
either the service directories or the service requestors.
The service matchmaking mechanism should be
computationally efficient running on the service
directories and avoid adding complicated
communication interactions.

4. Service Specification for F-Match
The capability of a service matchmaking approach is
limited by the underlying service specification
languages. Since there are no good ways to interpret
the full semantics of services, what type of the
information of the service is specified and how these
types of information are specified should be carefully
considered. In this paper, we will use SAW-OWL-S as
the service specification language for F-Match. By
integrating the situation ontology with OWL-S, the
SAW-OWL-S provides specification of the related
contextual and the precondition/result situations of a
service. Although the precondition/result-based
matching of software component has been presented
[16], few service matchmaking approaches have
considered such conditions of services. The use of
situations to specify precondition/result of services
provides a feasible approach to incorporating
conditions in service matchmaking.

For the sake of completeness, we will give a brief
introduction of situation ontology and SAW-OWL-S
before presenting the semantic specification of service
advertisements and service discovery requests in F-
Match. For detailed information of situation ontology
and SAW-OWL-S, the reader is referred to [4, 5].

4.1 Situation Ontology and SAW-OWL-S [4, 5]
Situation ontology models context and situation in a
hierarchical way such that the definitions for context
and situation can be easily shared and reused. Situation
ontology is extensible to user-defined domain specific
situation specifications. In situation ontology, an Entity
in the system may satisfy or notSatisfy a situation; the
satisfaction of a situation may imply satisfaction of
another situation, which can be inferred based on their
semantic specifications.

SAW-OWL-S models four main relations between
context/situation and service by integrating situation
ontology into OWL-S: the service contextual data, the
situation precondition, the situation result, and the
situation-service-triggering. By defining service
preconditions and results using situations, SAW-
OWL-S extends the expressiveness of OWL-S to
support contextual/situational preconditions and results.
Figure 1 shows the key classes and relations in SAW-
OWL-S.

Service

Service
Profile

Service
ModelService

Grounding

presents describedbysupports

SituationContext
Data

hasPrecondition
Related

ContextData
Process

has_process

expression:
condition

process:
Result

hasResult

ObjectProperty
rdfs:subClassOf

triggeredBy

Satisfies/
notSatisfy

hasResult
Situation

hasPrecondition
Situation

Entity

Figure 1. SAW-OWL-S (only related important classes

and relations are shown)

4.2 Service Advertisement and Request
Specification for F-Match
The SAW-OWL-S is utilized in F-Match to specify the
provided and required service functionality for both
service advertisements and requests. The semantics
carried in service specifications is reorganized into
three categories in F-Match: the input/output
parameters; the precondition/result conditions and
other service attributes. In F-Match, the input/output
parameters are represented by ontology concepts; the
precondition/result conditions are specified using
situations and the service descriptions include all data
type attributes of the services. The following is the
reorganized service specification in F-Match.

1 2 1 2

1 2 1

 { , , }

 { , },

 { , ,...}, { , ,...}

 { , },

 { , ,...}, { ,

service parameter condition description

parameter input output

input output

condition pre post

pre post

S S S S

S P P

where P in in P out out

S C C

where C pre pre C post p

=

=

= =

=

= = 2 ,...}

 { , , , ,...}description AnyURL String Double float

ost

S D D D D=

5. Matchmaking Algorithm of F-Match
The basic strategy behind F-Match is to prune
incompatible services and sort compatible services,
based on the following two criteria:
C1. Guarantee that the functionality of the discovered

service is compatible with the request.
C2. Rank all the compatible services according to the

similarity to the request and return the most
similar ones as matchmaking result.

Figure 2 shows the matchmaking algorithm of F-
Match. To process a new service discovery request, F-
Match will first filter out any service advertisements
which are not functionality-compatible to the request.
Then, F-Match will calculate and aggregate the
similarities of parameters, conditions and attributes
between each functionality-compatible service
advertisement and the request; sort all the remaining
service advertisements based on the final similarities
and return the top ranked service advertisement as the
matchmaking result.

5.1 Functionality Filtering
The objective of service discovery is to find a service
that can be executed by the requestor. In the best
scenario, there is a service which is exactly the same as
the request. However, in SOA, with numerous
combinations of service attributes, input/output
parameters and precondition/result conditions, the
chance of having such a perfect match is very small.
Instead of trying to find a perfect match, a more
realistic objective is to find a service which is “similar
enough” to the request. The functionality of the
discovered service should be at least compatible to the
request. For example, a user wants to find a service
which lists available used cars within a certain price
range. A service that lists used SUVs within a price
range is a positive discovery result, whereas a service
that lists used boats within a price range should be
filtered out.

In SOA, service discovery involves communication
iterations between service requesters and service
directories. In case the discovered service is not usable
to the requester, there will be large computation and
communication overhead to redo the service discovery
process, and it should be avoided. To achieve this goal,
the first step in F-Match is to filter out service
advertisements which are not functionality-compatible
to the request by performing functionality filtering.
The functionality-compatibility of a service to a service
discovery request is defined as follows:
Definition 1. Given a service discovery request R and
a service S, S is functionality-compatible to R if S is
both parameter-compatible and condition-compatible
to R.

We will define parameter-compatibility and
condition-compatibility in the following subsections.

Figure 2. The matchmaking algorithm of F-Match

5.1.1 Parameter-compatibility
For an output parameter of service advertisement OutS
and an output parameter of service request OutR, there
are the following four relations [17]:
-Exact Match. Either OutS is same as OutR or OutS is
a subclass of OutR.
-Plug-in. OutS subsumes OutR
-Subsume. OutS is indirectly subclass of OutR
-Fail. No subsumption relation between OutS and OutR

For the first three relations, there exist a
subsumption relation between OutS and OutR, and we
consider OutS and OutR are compatible with each
other in F-Match. Similarly, if there exists a
subsumption relation between two input parameters,
we consider they are compatible.

In most cases, a service discovery request may
specify multiple input and output parameters. In F-
Match, we define parameter-compatibility of a service
to a service discovery request as follows:
Definition 2. Given a service discovery request R and
a service S, S is parameter-compatible to R if for any
output of R, S has a corresponding compatible output;
and for any input of S, R has a corresponding
compatible input. Two parameters p1 and p2 are
compatible to each other if there exists a subsumption
relation between p1 and p2.

F-Match checks the parameter-compatibility of a
service advertisement against a service discovery
request to filter out all the service advertisements
which do not have compatible parameters.

5.1.2 Condition-compatibility
For precondition/result conditions, we adopt the
software component conditional matching level
categorized in [16] to define condition-compatibility:
Definition 3. Given a service discovery request R, a
service S, and that preS, postS, preR, postR represent
the precondition of S, the result of S, the precondition
of R and the result of R, respectively, S is condition-
compatible to R if there exists a combination of preS,
postS, preR, postR such that one of the following
relations holds.
-Equal: () ()R S S Rpre pre post post⇔ ∧ ⇔
-Plug-in: () ()R S S Rpre pre post post⇒ ∧ ⇒
-Plug-in post:

S Rpost post⇒
F-Match analyzes the relations among

precondition/result situations based on the value of
“implies” properties of situations derived from their
specifications and logical compositions to prune out
service advertisements without compatible conditions.

5.1.3 Functionality-compatible filtering
It is noted that the definition of functionality-
compatibility is based on parameter-compatibility and
condition-compatibility. There are other factors
affecting the successful execution of the returned
services, such as the internal process and the required
Quality of Service. In this paper, we do not address the
service matchmaking based on such factors.

5.2 Similarity Calculation and Fusion
The measurement of the similarity between a service
advertisement and a service discovery request involves
various types of service specifications as categorized
in Section 4.2. F-Match utilizes different algorithms to
calculate the similarities of parameters, conditions and
attributes; and aggregate these similarities to an overall
similarity. In the following subsections, we will
present the calculation of these similarities.

5.2.1 Similarity of input/output parameters
The similarity of parameters (represented as ontology
concepts) is usually measured based on their relative
positions in a concept tree. The similarity has discrete
values [14] based on the categorization as summarized
in Section 5.1. However, their approach has two
limitations. First, the discrete similarity calculation
algorithm in their approach does not reflect the levels
of direct subsumption relations between two
parameters. For example, for a service discovery
request with output of “SUV”, two services with
outputs “Thing” and “Car” have the same similarities
as “Plug In”, and hence these two totally different
services are not differentiated. Second, the number of
subclasses of concepts is not considered during their

similarity calculation. In a particular concept tree, if a
concept has more children concepts, the similarity
between this concept and each of its children concepts
should be smaller because each additional child
concept inherits an additional part of the semantics of
the parent concept. To overcome these two limitations,
with the similarity calculation in F-Match, if two
concepts are the same, then they have the maximum
similarity 1. The more intermediate concepts between
the two concepts, the smaller the similarity will be.
And the more subclasses of the intermediate concepts
between two concepts, the smaller the similarity will
be. If there exists no subsumption relations between
two concepts, then they have the minimum similarity 0.
The similarity calculation is given as follows:

Given a concept subsumption tree T, in which a
parent concept directly subsumes its children concepts,
with root R and two particular concepts C1 and C2.
Without losing generalization, assume that C1 has at
least the same depth-level as C2, the similarity between
C1 and C2 can be calculated as follows:

1

1 2

1 2
1 2

1,...

if ; 1,
if there exists a path , ,..., , ,..., ,1(,) ,
where =number of the subclasses of ;

if such a path0,

n

i ii

a a

i n a aa

C C
C C C C R

S C C
S CS=

=⎧
⎪
⎪= ⎨
⎪
⎪⎩

∏

1 2 does not exist and . C C≠

Unlike the approach in [14], the input parameters
and output parameters are not differentiated in F-
Match during similarity calculation. In case multiple
input/output parameters are specified, the similarity of
the input/output parameters between a service
advertisement and a service discovery request is
aggregated by finding the one-to-one mapping between
the parameters of the service advertisement and request
which has the largest average similarities. This
problem can be formulated as follows:

1 1

1 1

1,.

Given a request (input ,..., , output ,...,),
and a service (input ,..., , output ,...,):

 (,) ((,) (,)) / 2,

where (,) (

m n

p q

input output

input i

R inR inR outR outR
S inS inS outS outS

PS S R PS S R PS S R

PS S R Max Sum
=

= +

=

1 2

1 2

..

1 2

1,...

1 2

((,)) /),

1 , for ;

and (,) (((,)) /),

1 , for .

i

i

i jp

i i i

output i ji n

i i i

Similarity inS inR p

j m and j j i i

PS S R Max Sum Similarity outR outS n

j q and j j i i
=

≤ ≤ ≠ ≠

=

≤ ≤ ≠ ≠

It is noted that a perfect matched service will have
the largest parameter similarity 1, and any parameter
incompatible service will have the smallest parameter
similarity 0. The aggregation method will ensure that a
service with the parameter similarity 1 will have its
parameters in one-to-one equivalent to those of the
service discovery request although the order of the
parameters may be different.

5.2.2 Similarity of precondition/result conditions
In F-Match, the similarities of precondition/result
conditions between service advertisements and service
discovery requests has four different discrete levels
given in Table 1 based on the categorization of
relations in Section 5.1. The range of the similarity
values of these categories is [0, 1], with l for exact
match and 0 for no match or incompatible.

Table 1. Condition similarity values
Relation CS(S,R)
Exact match 1.0
Plug-in 2/3
Plug-in post 1/3
Fail 0

5.2.3 Similarity of data type service attributes
In this section, we will briefly discuss the similarity
calculation for three major types of data type service
attributes.
-String attribute: The traditional string similarity
algorithm, such as the longest substring algorithm or
the Soundex algorithm will be used;
-Integer/Float attribute: The similarity is calculated by
the ratio between two values.
-AnyURI attribute: Each URI refers to a concept and
utilizes the concept similarity measurement in [17] to
calculate the similarity.

After calculating the similarity of each data type
service attributes, we aggregate and normalize the
attribute similarity into the range [0, 1].

5.2.4 Similarity fusion and sorting
The parameter similarity (PS), the condition similarity
(CS) and the attribute similarity (AS) are fused into a
unified and normalized overall similarity with different
weights by the following formula:

 (,) * (,) * (,) * (,),
where , , 0 and 1

PS CS AS

PS CS AS PS CS AS

Sim S R W PS S R W CS S R W AS S R
W W W W W W

= + +
≥ + + =

Users can assign these weights in service discovery
request to reflect different user preferences. F-Match
then sorts all the functionality-compatible service
advertisements based on their overall similarities from
high to low. The top ranked service is returned as
result. According to our similarities calculation, the
overall similarity will be the highest value 1 if and
only if the parameters, conditions, and attributes of the
service advertisement all perfectly match the service
discovery request.

6. Experiments and Results
In this section, we will discuss our experiments and
results for evaluating the performance of F-Match in
terms of average request processing time and accuracy

of matchmaking results. We have implemented F-
Match in Java, and used the Jena2 toolkit [18] to
generate, parse and reason about OWL-based
specifications. The hardware used in our experiments
is a PC with 3GHZ CPU and 2GB memory.

In our experiments, we first defined a hierarchical
concept tree as parameter set and define three sets of
situations as condition sets. Then, we generated five
experiment sets with 20, 40, 60, 80 and 100 service
advertisements and service discovery requests. Each
SAW-OWL-S service specification in service
advertisement or service discovery requests includes
input/output parameters selected from the parameter
set, precondition/result situations selected from one of
the condition set and a set of service attributes. A
segment of OWL specification of input/output
parameters and precondition/result situations of one
generated service advertisement is shown in Figure 3.
<rdf:RDF

……
 <j.6:DataService rdf:ID="dataService17">
 <j.11:describedBy>
 <j.5:Process rdf:ID="process17">
 <j.5:hasOutput rdf:resource="PS.owl#para-1(2)-1(2)"/>
 <j.5:hasInput rdf:resource="PS.owl#para-2(2)-1(2)-1(2)"/>
 <j.8:hasResultSituation>
 <j.9:AtomicSituation rdf:about="CS.owl#aS-3-3"/>
 </j.8:hasResultSituation>
 <j.8:hasPreconditionSituation>
 <j.9:ConjunctionSituation rdf:about="CS.owl#cS-2-2-2"/>
 </j.8:hasPreconditionSituation>
 </j.5:Process>
 </j.11:describedBy>
 ……
 </j.6:DataService>
</rdf:RDF>

Figure 3. A Sample SAW-OWL-S specification

To evaluate the effectiveness of our functionality
filter, especially the effectiveness of condition-
compatibility filtering, three different condition sets
shown in Table 2 were used in our experiments. For
each condition set, besides the number of different
situations defined in the set, we also used the
Implication Ratio to measure the density of the
implication relations among the situations in the set.
The Implication Ratio is defined as follows:
Definition 4. Given a condition set CS with n different
conditions, the implication ratio IR of CS is defined as:

2

1 2

1 2

1 2
1 2

 () (,) / ,

1,
 (,)

0,

s CS s CS
IR CS implies s s n

if s implies s
where implies s s

otherwise

∈ ∈

=

⎧
= ⎨
⎩

∑ ∑

Table 2. The condition sets used in experiments
 Number of Situations Implication Ratio
Small 16 14.84%
Medium 60 7.73%
Large 115 2.38%

Figure 4. Average request processing time comparison
for different filtering strategies. (a) Small condition set;
(b) medium condition set; and (c) large condition set.

We first evaluated the effectiveness of functionality

filter by comparing the average request processing
time of three types of filtering strategies: functionality
filtering as utilized in F-Match, parameter filtering
similar to that in [14] and no filtering. Figure 4 shows
the experimental results. From the experimental results,
we observe that for all the three condition sets, F-
Match requires the least average request processing
time. The parameter filtering also performs quite well,

whereas the matchmaking not considering
compatibility filtering has poor performance. The
experimental results validate that the functionality
filtering in F-Match improves the efficiency of
matchmaking.

Second, we evaluated the effectiveness of F-Match
in term of the accuracy of the matchmaking results.
Using functionality filter, F-Match guarantees that the
matchmaking results are always functionality-
compatible to the service discovery requests. We
compare the hit rate and miss rate for the three types of
filtering: functionality filtering, parameter filtering,
and no filtering. The hit rate is defined as the ratio of
the number of returning functionality-compatible
services and the number of requests processed in cases
there exists a functionality-compatible service. The
miss rate is defined as the ratio of the number of
functionality-incompatible services and the number of
all the returned services. The results are shown in
Tables 3 and 4.

Table 3. Hit rate comparison

Condition
Set

Functionality
Filtering

Parameter
Filtering

No
Filtering

Small 1.0 0.5873 0.4206
Medium 1.0 0.4394 0.4242
Large 1.0 0.5900 0.4090

Table 4. Miss rate comparison
Condition

Set
Functionality

Filtering
Parameter
Filtering

No
Filtering

Small 0.0 0.7233 0.8233
Medium 0.0 0.8700 0.9067
Large 0.0 0.9400 0.9700

According to the experimental results, we observe
that the parameter filtering and no filtering are largely
error prone, especially for the large condition set with
a small implication ratio. On the other hand, F-Match
always returns functionality-compatible services and
never returns functionality-incompatible services as
results.

7. Conclusion and Future Work
In this paper, a service matchmaking approach based
on service functionality, called F-Match, is presented.
F-Match utilizes SAW-OWL-S to specify service
advertisements and service discovery requests, in
which situations are used to specify the
precondition/result conditions of services. F-Match
begins with functionality filtering to prune out
functionality-incompatible services, and then ranks
functionality-compatible services based on the fusion
of similarities against the input/output parameters,

precondition/result situations and other data type
service attributes of the request. F-Match provides a
semantic-based flexible matchmaking approach to
efficiently identifying functionality-compatible
services. Our experimental results validate this
conclusion.

Further research in this area is needed to improve
the matchmaking for SOA. For example, a more
general algorithm needs to be developed to inference
about the implication relation among various situations.
We also need to investigate the possible condition-
compatibility analysis based on SWRL condition
specification supported in OWL-S. We also need to
improve F-Match to support matchmaking of service
related properties other than functionalities and data
type attributes, such as the process models, the related
contextual data and the Quality of Service of services.

Acknowledgment

The work reported here was supported by the
National Science Foundation under grant number ITR-
CYBERTRUST 0430565.

References:
[1] W3C, “Web Services Architecture,”
http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211/.
[2] WSDL, “Web Services Description Language”,
available at: http://www.w3.org/TR/wsdl.
[3] “OWL-S: Semantic Markup for Web Services”,
available at: http://www.w3.org/Submission/OWL-S/.
[4] S.S. Yau and J. Liu, “Incorporating Situation
Awareness in Service Specifications”, Proc. 9th IEEE
Int’l Symp. on Object and Component-Oriented Real-
Time Distributed Computing (ISORC 06), April 2006,
pp.287-294.
[5] S. S. Yau and J. Liu, “Hierarchical Situation
Modeling and Reasoning for Pervasive Computing”,
Proc. 4th Workshop on Software Technologies for
Future Embedded & Ubiquitous Systems (SEUS 06),
April, 2006, pp.5-10.
[6] S. S. Yau, Y. Wang, and F. Karim, “Development
of Situation-Aware Application Software for
Ubiquitous Computing Environments”, Proc. 26th Ann.
Int'l Computer Software and Applications Conf.
(COMPSAC 2002), 2002, pp. 233-238.
[7] S. S. Yau, F. Karim, Y. Wang, B. Wang, and S.
Gupta, “Reconfigurable Context-Sensitive Middleware
for Pervasive Computing”, IEEE Pervasive Computing,
1(3), July-September 2002, pp.33-40.
[8] Sun Microsystems, “Jini Architecture
Specification”, V1.2, December 2001, available at:
http://www.sun.com/software/jini/specs/jini1_2.pdf.

[9] E. Guttman, C. Perkins, J. Veizades and M. Day,
“Service Location Protocol”, V2, June 1999, available
at http://www.faqs.org/ftp/rfc/pdf/rfc2608.txt.pdf.
[10] The Salutation Consortium, “Salutation
Architecture Specification (Part 1)”, V2.0c, June 1999,
available at: http://www.salutation.org/.
[11] Microsoft Corporation, “Understanding Universal
Plug and Play White Paper”, June 2000, available at
http://www.upnp.org/download/UPNP_Understanding
UPNP.doc.
[12] Bluetooth, “Specification of the Bluetooth
system”, V1.0B, December 1999, available at
http://grouper.ieee.org/groups/802/15/Bluetooth/core_
10_b.pdf.
[13] Universal Description Discovery and Integration
Platform”, September 2000, available at
http://www.uddi.org/pubs/Iru_UDDI_Technical_White
_Paper.pdf.
[14] M. Paolucci, T. Kawamura, T. R. Payne, and K.
Sycara, “Semantic Matching of Web Services
Capabilities”, Proc. 1st Int’l Semantic Web Conf.
(ISWC2002), 2002, pp. 333-347.
[15] E. Sirin, B. Parsia, and J. Hendler, “Filtering and
selecting semantic Web services with interactive
composition techniques”, Intelligent Systems, IEEE,
Volume 19, Issue 4, Jul-Aug 2004 Page(s):42 - 49
[16] A. Moormann Zaremski, and J. M. Wing,
“Specification matching of Software Component”,
ACM Trans. on Software Engineering and
Methodology, 1997, pp. 333-369.
[17] J. Zhong, H. Zhu, J. Li, and Y. Yu, “Conceptual
graph matching for semantic search,” Proc. 2002 Int’l
Conf. on Computational Science (ICCS2002), April,
2002, pp.92-106.
[18] Jena2 Semantic Web Toolkit. Available at
http://www.hpl.hp.com/semweb/jena2.htm.

