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Abstract 

Autonomous Decentralized System (ADS) which 
has the characteristics of on-line maintainability, 
on-line expandability and fault-tolerance has 
been successfilly used in many distributed 
computing domains, such as factory automation, 
trafic control, ofice automation, nuclear power 
plants. In order to realize many benefits of 
object-oriented software development, a 
framework for ADS application soNare 
development based on Common Object Request 
Broker Architecture (CORBA), which is a set of 
standards for object systems in heterogeneous 
distributed environments, is presented In this 
framework, CORBA is extended and built over 
ADS system software. A CASE environment for 
ADS application so$ware development based on 
CORBA is also presented 

Keyword: Autonomous Decentralized System, 
application software development, CASE 
environment, CORBA, framework. 

1. Introduction 

Autonomous Decentralized System (ADS) 
[l] [2], which has the characteristics of on-line 
expandability, on-line maintainability and fault- 
tolerance, has been successfully used in many 
distributed computing domains, such as factory 
automation, traffic control, office automation 
and nuclear power plants. In order to have 
effective ADS application software 
development, Distributed Object Computing 
(DOC) [3] [4] seems to be a very promising 
approach because it provides a much better way 
to capture the inherently decentralized nature of 

distributed computing and many benefits of 
object-oriented technology (encapsulation, reuse, 
portability, and expandability) for distributed 
application software as for stand-alone 
application sotlware. Object-oriented 
middleware, such as Object Management 
Group’s (OMG’s) Common Object Request 
Broker Architecture (CORBA) [5] [6] and 
Microsoft’s Distributed Component Object 
Model (DCOM) [7], is an enabling technology 
for DOC. CORBA is an emerging industry 
standard for distributed object systems. DCOM 
is an application-level protocol for object- 
oriented remote procedure calls for distributed, 
component-based systems. In order to use DOC 
in ADS application software development, ADS 
system software should be enhanced to support 
distributed objects. One of the approaches to 
supporting distributed objects in ADS system 
software is to add CORBA over ADS system 
software. Since CORBA is a common distributed 
infrastructure supported by many vendors, this 
approach also guarantees the interoperability 
with other CORBA-compliant distributed 
computing systems. 

In this paper, we will present a framework 
for ADS application software development based 
on CORBA. In our framework, we will build 
CORBA over ADS system software, extend 
CORBA to retain ADS characteristics, and then 
provide a CASE environment for ADS 
application software development based on 
CORBA. We will use an Automatic Teller 
Machine (ATM) as an example to illustrate how 
OUT framework will work. 

2. Background 
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In this section, we will provide an overview 
of CORBA and ADS system software 
architecture for the sake of completeness. 

2.1. Overview of CORBA 

CORBA [5][6] is a set of standards which 
enables objects to transparently make and 
receive requests and responses in a distributed 
environment. It is based on OMG object model, 
where a client can send a message to an object 
cross address space. The client accesses the 
services of the object by a well-defined 
encapsulating interface which isolates the client 
from the implementation of the services and the 
object interprets the message to decide what 
service to perform. The object model describes 
object semantics and object implementation. 
Object semantics is related to the client, and 
includes such concepts as object and object 
reference, requests and operations, types and 
signatures. Object implementation includes such 
concepts as methods, execution engines, and 
activation. 

The interface of an object in CORBA is 
defined by OMG Interface Definition Language 
(IDL). IDL is a declarative language which 
describes the services of the objects and needs to 
be mapped into particular programming 
languages. IDL mappings to C, C++, and 
Smalltalk have been specified by OMG. An IDL 
compiler is needed to bind IDL to a particular 
programming language. 

The message passing between a client and 
an object implementation is performed by the 
Object Request Broker (ORB). The ORB, 
together with object adapters, provides all the 
mechanisms required to find the object 
implementation for the request, to prepare the 
object implementation to receive the request, to 
transfer the request, to activate and deactivate 
the object implementation, and to create and 
manage object references. The ORB 
functionality is defined by the ORB interface 
using pseudo-IDL and its binding to C++ is 
specified by OMG. 

An object adapter specifies how an object 
implementation access services provided by the 
ORB. There are several object adapters with 
interfaces that are appropriate for specific kinds 
of objects. Basic Object Adapter is an object 
adapter specified by OMG, and can be used for 
most ORB objects with conventional 
implementation. 

OMG also specifies a set of services, called 
Common Object Services, to provide the basic 
functions for using and implementing objects 
and a set of services, called Common Object 
Facilities, to provide general purpose 
capabilities useful in many applications. 

2.2. ADS System Software Architecture 

Conceptually, ADS has the feature that 
every software subsystem has autonomy to 
manage itself and coordinate with other software 
subsystems [l] [2]. Coordination is achieved by 
communicating with other software subsystems 
through Data Field (DF), in which the data 
circulates and software subsystems select the 
data according to the content code. The software 
subsystem in ADS is called Atom. Every Atom is 
connected to Data Field. Data also can circulate 
among the software modules in Atom. Data 
Field in Atom is called Atom Data Field. 

Atom consists of not only the application 
software, but also its own management system 
software called Autonomous Control Processor 
(ACP). Each ACP is self-contained, operates 
according to its local information and 
communicates asynchronously with other ACPs 
by message broadcast in Data Field. Data Field 
Management Module in ACP is responsible for 
receiving the data from Data Field and sending 
the data into Data Field. The application 
software module is driven by the data from Data 
Field according to its content code. It is activated 
by Execution Management Module in ACP, 
receives the data from Data Field, processes the 
data and sends the resultant data to Data Field. 
Therefore, each ACP can operate even when 
other ACPs fail, and fault tolerance at system 
level is achieved. Fault tolerance at the 
application software level is supported by 
replicating the application software modules in 
different Atoms with a threshold-voting 
mechanism. The replica application software 
modules process the same data from Data Field 
and send the resultant data to Data Field. Data 
Consistency Management Module in each ACP 
selects the correct resultant data from the replica 
application software modules by the threshold- 
voting mechanism. On-line expandability is 
supported by the construction management 
module as an application software module. The 
construction management module can 
independently install the application software 
module to an Atom without interrupting other 
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Atoms. On-line maintainability is supported by 
the Built-In Test module (BIT) in each ACP and 
the External Tester module (EXT) as 
application software modules. The BIT and EXT 
can independently test the application software 
modules and decide to start the operation of the 
application software modules according to the 
test result. The ACP software architecture is 
shown in Fig. 1. 

: Execution 
i Management 

Module 

Data 
Consistency 
Management 

Module 

BIT 

Atom Construction 
Data * Management 

Module 

I .._._.._._..__. .T .___..__..__._._i 
Data Field 

Fig. 1. The ACP software architecture 

3. Building CORBA over ADS System 
Software 

Since ADS system software provides a 
communication layer and the mechanisms to 
locate, activate and deactivate an application 
software module [l] [2], we decide to implement 
CORBA over ADS system software. 
Specifically, we will implement the ORB 
functionality by a pair of libraries, one for client 
application, one for server application, and ORB 
daemon. ORB daemon is implemented by a few 
system software modules from ACP, and it is 
responsible for locating, activating and 
deactivating objects, initiating and receiving 
remote object request. The client library can 
initiate the remote object request by forwarding 
it to ORB daemon and the server library can 
initiate and receive remote object request 
through ORB daemon. We will also implement 
Interface Repository (IR) as a system-resident 
ADS application. The software architecture of 
our CORBA implementation is shown in Fig. 2. 

ORB Libraries 

+ 
Data Field 

Fig.2. Software architecture of our CORBA 

Our implementation also includes an IDL 
compiler. The IDL compiler provides a lan- 
guage binding from OMG IDL to C++. It gener- 
ates C++ stub code for client application, im- 
plementation skeleton for server application and 
type information for IR. In our implementation, 
a client corresponds to an ADS application soft- 
ware module. The default behavior of C++ stub 
code generated by the IDL compiler is to mar- 
shal the remote object request, forward it to the 
ORB daemon, receive the result from the ORB 
daemon, and unmarshal it. All these functions 
are encapsulated in a proxy object generated by 
the IDL compiler for every IDL interface. The 
proxy object provides the same methods as the 
remote server object so that the client invokes 
these methods of the proxy object just the same 
as the remote server object. The proxy object 
also provides other functions in our implementa- 
tion, such as data consistency check discussed in 
the next section. The default behavior of the im- 
plementation skeleton is to register implementa- 
tion definition to the ORB daemon, to create or 
destroy the object reference, and to prepare to 
receive the requests from the ORB daemon and 
send the result to the ORB daemon. In our im- 
plementation, a server corresponds to an ADS 
application software module. Each application 
software module can contain multiple active 
objects of a given implementation. The Interface 
Repository provides type information for other 
application modules to check type dynamically. 

Execution Management Module in ACP is 
modified to support part of BOA’s functionality, 
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which is to maintain implementation repository, 
bind the client to the server object in the 
software application module and activate the 
application software module according to the 
information in the implementation repository in 
the response to the remote object requests. 

4. Extending CORBA to support ADS 
characteristics 

In order to maintain ADS characteristics of 
on-line maintainability, on-line expandability 
and fault-tolerance, CORBA needs to be 
extended to support object group, state transfer, 
data consistency check and object migration. 

4.1. Object Group 

Fault-tolerance can be achieved by 
replicating the server object in different Atoms to 
form an object group to respond to the requests 
from a client. Basically, there are two kinds of 
replica. One is Active Replica, in which every 
server object in the object group responds to a 
request. If at least one object in the object group 
works, the client gets the services. However, in 
Active Replica, each object in the object group 
needs to be consistent with each other. If one 
object in the object group fails, it needs to be 
restored to the same state of the other objects. 
Another is Passive Replica in which only one 
object as the primary object responds to the 
requests from a client, other objects act as the 
backup objects. Once the object fails to provide 
the services, one of the backup objects takes over 
and continues to provide the services. In Passive 
Replica, it takes time for the backup object to get 
to the same state as the primary object. Active 
Replica Object Group is correspondent to replica 
application software modules in ADS. In our 
implementation, we select Active Replica Object 
Group, and proxy object in a client is bound to 
an active replica server object group instead of a 
single object implementation shown in Fig. 3. 

Group object communication protocol in our 
CORBA implementation is a broadcast protocol 
since ADS is built over a reliable LAN which 
provides broadcast. In our group object 
communication, each message is broadcasted 
with a header, in which there is a message 
identifier containing the identity of the 
broadcasting ORB daemon, a message sequence 
number, and content code. The operation of 

. _ . . . . . . . _ _ _ _ _ .- _ . . . . _ _ . 
: Ache Replica : 
: Object Group : 
i IAtom Ii 

Fig. 3. Active Replica Object Group 

group object communication protocol is 
illustrated with the following scenarios: 

l When a client calls an object’s binding 
operation, the ORB daemon A broadcasts a 
message with reserved content code for the 
server object binding. The data field of the 
message includes interface name, object name. 

l The ORB daemon B which receives the 
A’s message checks if there is the required 
server object in its own host which can provide 
the services and broadcasts an acknowledgment 
message indicating whether it can provide the 
services. The ORB daemon C on receiving the 
B’s acknowledgment message will check if it has 
received A’s message. If so, it acknowledges A’s 
message by broadcasting a message indicating 
whether it can provide the services. If not, it 
broadcasts a negative acknowledgment message 
indicating that it has not received A’s message. 
Any ORB daemon which receives C’s negative 
acknowledgment message will rebroadcast A’s 
message if it has received A’s message. 

l The ORB daemon A collects all 
acknowledgment messages within some time 
interval, builds an object group for this client, 
assigns an In content code and Out content code 
for the object group and broadcasts a message to 
inform all the ORB daemons of the creation of 
an object group. The message includes the 
assigned content codes and the group member 
list. Each member in the object group will use 
the same content codes in the following 
communication. 

l All ORB daemons which can provide 
services activate -ADS application software 
module in which the server object in the object 
group resides to prepare for receiving the 
requests from the client. 
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l The client initiates a request by asking 
the ORB daemon A to broadcast the request. 

l An ORB daemon D in the object group 
receives the A’s request, and checks the 
sequence number in the message to see if it is 
more than one greater than the largest sequence 
number it received from source A. If not, it 
processes the request, records the sequence 
number in the message, calls the method of the 
server object, and broadcasts the 
acknowledgment message in which the result is 
packed. Otherwise, it has missed some messages 
from source A, and broadcasts an 
acknowledgment message indicating that it 
cannot provide the service and asks for state 
transfer. State transfer is equivalent to method 
invocation on one of the other objects in the 
same object group to transfer to that object’s 
state. After receiving D’s acknowledgment 
message, the ORE3 daemon E will respond to A’s 
request in the same way as D by broadcasting 
acknowledgment message for A’s request if it 
has received A’s request. If it has not received 
A’s request, it will broadcast a negative 
acknowledgment message for A’s request. Any 
ORB daemon which received E’s negative 
acknowledgment message (including A) will 
rebroadcast A’s request if it has received A’s 
request. 

l The ORE3 daemon collects all 
acknowledgment messages within some time 
interval, uses threshold-voting mechanism to 
select the most-likely correct result, and 
forwards it to the client. 

l When the client exits, it asks the ORB 
daemon to broadcast a message to inform each 
member in the object group to release the 
resource for the object group. 

The group object communication protocol 
described above can tolerate transient 
transmission failure and provides the total order 
of the messages and atomic delivery of the 
messages to server-client group communication 
over LAN in our CORBA implementation. 
Hence, it guarantees that the state of the object 
group is consistent if the server object does not 
fail. 

4.2. State Transfer 

If a new object joins the object group or a 
object recovers from failure, the object needs to 
get to the current state of the object group. The 
oldest object in the group will send its state to 

the new object. During this period, the ORB 
daemons will delay all the requests to the object 
group until the state transfer is completed. 

4.3. Object Migration 

Sometimes, a member of the server object group 
needs to migrate to some other machine in order 
to achieve load-balancing and fault-tolerance. 
The migration must not affect the services of the 
server object group. A possible solution will 
work as follows. 

The server object leaves the server object 
group and the executable image of the server 
object is transferred to another Atom by 
Construction Management Module in ACP. The 
ORB daemon in that Atom will activate the 
server object application module. The server 
object will rejoin the server object group again 
and restore to the current state of the server 
object group by state transfer. 

5. ADS Application Software 
Development Framework based on 
CORBA 

Our framework for ADS application 
software development based on CORE3A is 
shown in Fig. 4. It is modified fi-om our object- 
oriented software development framework for 
ADS [S] [9]. 

Requirement Statement 
Object-Oriented 

) Requirement Analysis 

Object & Dynamic Model 
b 

v 
e 

Module Description in DDL 

C 

0 
n 

Fig. 4. Our object-oriented framework for 
ADS application software development 

Our framework has the following phases: 
object-oriented requirements analysis, system 
design, implementation, allocation, verification 
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and maintenance. We start ADS sofhvare 
development with a set of requirement 
statements, which is transformed into the object 
model and dynamic model using object-oriented 
requirements analysis (OORA) technique. The 
object model shows classes and their hierarchical 
structures derived fi-om the knowledge about 
application domain and the requirement 
statements. The dynamic model shows a fmite- 
state machine model for each class in the object 
model. The object model and dynamic model are 
represented by the module description in Design 
Description Language (DDL) [S] in the system 
design phase. Then, each module design in DDL 
is implemented in C++ and the implemented 
modules are allocated to processors. At the end 
of each phase, the adequacy of the results of 
each phase is verified. We have a CASE 
environment to support all these phases. Our 
CASE environment consists of CASE tools for 
object-oriented analysis and system design [9], 
object clustering [IO] and module allocation 
Pll. 

In our new framework, we add the support 
for CORBA-based application software 
development in all the phases and our CASE 
environment. In the OORA phase, we will 
emphasize the role of objects, persistency of 
objects, object life cycle, association relationship 
among objects, and data flow between the 
producer object and the consumer object in order 
to provide enough information for object 
clustering [lo] and organize class inheritance 
hierarchy to make full use of CORBA common 
object services [6]. In the design phase, our 
object-clustering CASE tool [lo] will cluster the 
objects to the modules, identify the objects 
which export their interfaces to other modules, 
generate IDL interfaces according to the object 
information in the object model, and use our IDL 
compiler to generate IDL stubs and 
implementation skeleton for the implementation 
phase. In the implementation phase, each class is 
implemented in C++ using IDL stubs and 
implementation skeleton generated in the 
previous phase, and then each module is 
implemented in C++ using CORBA APIs. In the 
allocation phase, our CASE tool will emulate the 
real distributed systems by the workstation 
cluster, allocate the modules to the workstations 
according to our allocation algorithm [ll], 
replicate the same module to different Atoms to 
achieve fault-tolerance, verify the consistency 
between the modules and the Atoms, run the 

application to tune our allocation. During the 
maintenance phase, the object implementation in 
each module can be enhanced without affecting 
the clients which use the services of the object 
because CORBA completely separates the 
interface from the object implementation. 

6. An example 

In this section, we will use an Automatic 
Teller Machine (ATM) example [9] to illustrate 
how our framework supports ADS application 
software development based on CORBA. The 
software requirements for the ATM system are 
specified as follows: 

Develop the software to support a 
computerized banking system with automatic 
teller machines (ATMs) to be shared by a 
consortium of ban&. Each bank has its own 
computer to maintain its accounts and make 
updates to accounts. ATM. communicate with a 
central computer of the consortium, An ATM 
accepts a cash card, interacts with the user, 
communicate with the central computer to 
process transactions, and dispenses cash. For 
simplicity purpose, the system is assumed to have 
two AT&Is, two Banks and one consortium. 

For the object-oriented requirements 
analysis, we obtain the object and dynamic 
models of the ATM system according to the 
procedures in our framework [9]. The object 
model is shown in Fig. 5. 

Entered on -IConsists 

I -I‘ I 
Issues 

I owns 
I I 

1 Card-Authorization 1) 
-1 

I 
Bank Holds Account 

I I I I 

Fig. 5. The object diagram for the ATM system 

For the system design, we first identify 
objects and inter-object communications. In this 
example, the objects are ATMl, Cash-Cardl, 
ATM2, CashCard2, Consortium, Bar&l, 
Transactionl, Bank2, Transaction2, Accountl, 
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Updatel, Card-Authorization1 , Account& 
Update2, and Card-Authorization2 as shown in 
Fig. 6. The inter-object communications are 
showed by the lines with arrows in Fig. 6. In the 
next step, we cluster the objects into several 
modules shown in Fig. 6, where the objects in 
the gray boxes are identified as the objects which 
export their interfaces to other modules and IDL 
interfaces are generated by IDL generator 
according to the information in the object model. 
Then, IDL stubs and implementation skeletons 
are generated using our IDL compiler. 

Fig. 6. The object clusters of the ATM example 

For the implementation phase, the IDL stubs 
are used by client objects to invoke the methods 
of the remote objects, and implementation 
skeletons are used to implement the remote 
objects. For the allocation phase, we allocate the 
modules to different Atoms as shown in Fig. 7. 
The server object Consortium is replicated to 
two different Atoms to form an active replica 
object group to provide the services to other 
modules to achieve fault tolerance. Bank1 
module and Update1 module are allocated to the 
same Atom since communication between these 
two modules are heavy. Similarly, Bank2 
module and Update2 module are allocated to the 
same Atom. The two ATM modules are allocated 
to two different Atoms. 

7. Discussion and Future Work 

In this paper, we have presented a 
framework for ADS application software 
development based on CORBA. We are 
implementing the CORBA over ADS system 
software, extending the CORBA to achieve ADS 
characteristics, and modifying our CASE 
environment for ADS application software 

4tom5 
=I 

A i Active 
. . ..-.- 
: Replica 

Fig. 7. Module Allocation 
development based on CORBA. We also plan to 
incorporate a performance monitor into the ORB 
daemon in our implementation to obtain 
communication traffic information among 
different modules to dynamically support load- 
balancing among the hosts and reconfiguration 
of the application software modules by object 
migration and achieve interoperability with other 
CORBA implementations in the near future. 

Since ADS has been successfully used in a 
number of different domains, we plan to analyze 
existing ADS applications in the different 
domains using our framework, migrate existing 
ADS applications to our CORBA-compliant 
development and running environment, and 
build domain-specific frameworks for ADS 
applications. 

In order to migrating existing ADS 
application software modules to our CORBA- 
compliant development and running 
environment, we must encapsulate ADS 
application software modules by IDL interface. 
Basically, there are two ways for encapsulation. 
One is coarse encapsulation, which specifies the 
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functionality of every ADS application software 
module by IDL interface. The object 
implementation just responds a request by 
executing the executable image of the 
application software module with different 
parameters. Another is fine encapsulation, which 
factors out the common functions among 
different ADS application software modules, 
encapsulates it as the common object services 
available to every object, and rewrites ADS 
application software modules as the application 
objects using common object services. 

Since many ADS applications are time 
critical, we will extend our CORBA-based 
framework for real-time systems. In order to 
meet rigid temporal requirements in real time 
systems, we must have high-performance 
CORBA implementation which makes full use of 
underlying communication link, like 
Asynchronous Transfer Mode (ATM ), and 
provide Quality of Services(QoS) for distributed 
objects accessible by ADS application 
developers. 
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