
A Framework for ADS Application Software Development
Based on CORBA

Stephen S. Yau and Shaowei Mao
Computer Science and Engineering Department

Arizona State University
Tempe, AZ 85281-5406 USA
email: (yau, mao} @asu.edu

Abstract

Autonomous Decentralized System (ADS) which
has the characteristics of on-line maintainability,
on-line expandability and fault-tolerance has
been successfilly used in many distributed
computing domains, such as factory automation,
trafic control, ofice automation, nuclear power
plants. In order to realize many benefits of
object-oriented software development, a
framework for ADS application soNare
development based on Common Object Request
Broker Architecture (CORBA), which is a set of
standards for object systems in heterogeneous
distributed environments, is presented In this
framework, CORBA is extended and built over
ADS system software. A CASE environment for
ADS application so$ware development based on
CORBA is also presented

Keyword: Autonomous Decentralized System,
application software development, CASE
environment, CORBA, framework.

1. Introduction

Autonomous Decentralized System (ADS)
[l] [2], which has the characteristics of on-line
expandability, on-line maintainability and fault-
tolerance, has been successfully used in many
distributed computing domains, such as factory
automation, traffic control, office automation
and nuclear power plants. In order to have
effective ADS application software
development, Distributed Object Computing
(DOC) [3] [4] seems to be a very promising
approach because it provides a much better way
to capture the inherently decentralized nature of

distributed computing and many benefits of
object-oriented technology (encapsulation, reuse,
portability, and expandability) for distributed
application software as for stand-alone
application sotlware. Object-oriented
middleware, such as Object Management
Group’s (OMG’s) Common Object Request
Broker Architecture (CORBA) [5] [6] and
Microsoft’s Distributed Component Object
Model (DCOM) [7], is an enabling technology
for DOC. CORBA is an emerging industry
standard for distributed object systems. DCOM
is an application-level protocol for object-
oriented remote procedure calls for distributed,
component-based systems. In order to use DOC
in ADS application software development, ADS
system software should be enhanced to support
distributed objects. One of the approaches to
supporting distributed objects in ADS system
software is to add CORBA over ADS system
software. Since CORBA is a common distributed
infrastructure supported by many vendors, this
approach also guarantees the interoperability
with other CORBA-compliant distributed
computing systems.

In this paper, we will present a framework
for ADS application software development based
on CORBA. In our framework, we will build
CORBA over ADS system software, extend
CORBA to retain ADS characteristics, and then
provide a CASE environment for ADS
application software development based on
CORBA. We will use an Automatic Teller
Machine (ATM) as an example to illustrate how
OUT framework will work.

2. Background

113

Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE
Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE

In this section, we will provide an overview
of CORBA and ADS system software
architecture for the sake of completeness.

2.1. Overview of CORBA

CORBA [5][6] is a set of standards which
enables objects to transparently make and
receive requests and responses in a distributed
environment. It is based on OMG object model,
where a client can send a message to an object
cross address space. The client accesses the
services of the object by a well-defined
encapsulating interface which isolates the client
from the implementation of the services and the
object interprets the message to decide what
service to perform. The object model describes
object semantics and object implementation.
Object semantics is related to the client, and
includes such concepts as object and object
reference, requests and operations, types and
signatures. Object implementation includes such
concepts as methods, execution engines, and
activation.

The interface of an object in CORBA is
defined by OMG Interface Definition Language
(IDL). IDL is a declarative language which
describes the services of the objects and needs to
be mapped into particular programming
languages. IDL mappings to C, C++, and
Smalltalk have been specified by OMG. An IDL
compiler is needed to bind IDL to a particular
programming language.

The message passing between a client and
an object implementation is performed by the
Object Request Broker (ORB). The ORB,
together with object adapters, provides all the
mechanisms required to find the object
implementation for the request, to prepare the
object implementation to receive the request, to
transfer the request, to activate and deactivate
the object implementation, and to create and
manage object references. The ORB
functionality is defined by the ORB interface
using pseudo-IDL and its binding to C++ is
specified by OMG.

An object adapter specifies how an object
implementation access services provided by the
ORB. There are several object adapters with
interfaces that are appropriate for specific kinds
of objects. Basic Object Adapter is an object
adapter specified by OMG, and can be used for
most ORB objects with conventional
implementation.

OMG also specifies a set of services, called
Common Object Services, to provide the basic
functions for using and implementing objects
and a set of services, called Common Object
Facilities, to provide general purpose
capabilities useful in many applications.

2.2. ADS System Software Architecture

Conceptually, ADS has the feature that
every software subsystem has autonomy to
manage itself and coordinate with other software
subsystems [l] [2]. Coordination is achieved by
communicating with other software subsystems
through Data Field (DF), in which the data
circulates and software subsystems select the
data according to the content code. The software
subsystem in ADS is called Atom. Every Atom is
connected to Data Field. Data also can circulate
among the software modules in Atom. Data
Field in Atom is called Atom Data Field.

Atom consists of not only the application
software, but also its own management system
software called Autonomous Control Processor
(ACP). Each ACP is self-contained, operates
according to its local information and
communicates asynchronously with other ACPs
by message broadcast in Data Field. Data Field
Management Module in ACP is responsible for
receiving the data from Data Field and sending
the data into Data Field. The application
software module is driven by the data from Data
Field according to its content code. It is activated
by Execution Management Module in ACP,
receives the data from Data Field, processes the
data and sends the resultant data to Data Field.
Therefore, each ACP can operate even when
other ACPs fail, and fault tolerance at system
level is achieved. Fault tolerance at the
application software level is supported by
replicating the application software modules in
different Atoms with a threshold-voting
mechanism. The replica application software
modules process the same data from Data Field
and send the resultant data to Data Field. Data
Consistency Management Module in each ACP
selects the correct resultant data from the replica
application software modules by the threshold-
voting mechanism. On-line expandability is
supported by the construction management
module as an application software module. The
construction management module can
independently install the application software
module to an Atom without interrupting other

114

Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE
Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE

Atoms. On-line maintainability is supported by
the Built-In Test module (BIT) in each ACP and
the External Tester module (EXT) as
application software modules. The BIT and EXT
can independently test the application software
modules and decide to start the operation of the
application software modules according to the
test result. The ACP software architecture is
shown in Fig. 1.

: Execution
i Management

Module

Data
Consistency
Management

Module

BIT

Atom Construction
Data * Management

Module

I .._._.._._..__. .T .___..__..__._._i
Data Field

Fig. 1. The ACP software architecture

3. Building CORBA over ADS System
Software

Since ADS system software provides a
communication layer and the mechanisms to
locate, activate and deactivate an application
software module [l] [2], we decide to implement
CORBA over ADS system software.
Specifically, we will implement the ORB
functionality by a pair of libraries, one for client
application, one for server application, and ORB
daemon. ORB daemon is implemented by a few
system software modules from ACP, and it is
responsible for locating, activating and
deactivating objects, initiating and receiving
remote object request. The client library can
initiate the remote object request by forwarding
it to ORB daemon and the server library can
initiate and receive remote object request
through ORB daemon. We will also implement
Interface Repository (IR) as a system-resident
ADS application. The software architecture of
our CORBA implementation is shown in Fig. 2.

ORB Libraries

+
Data Field

Fig.2. Software architecture of our CORBA

Our implementation also includes an IDL
compiler. The IDL compiler provides a lan-
guage binding from OMG IDL to C++. It gener-
ates C++ stub code for client application, im-
plementation skeleton for server application and
type information for IR. In our implementation,
a client corresponds to an ADS application soft-
ware module. The default behavior of C++ stub
code generated by the IDL compiler is to mar-
shal the remote object request, forward it to the
ORB daemon, receive the result from the ORB
daemon, and unmarshal it. All these functions
are encapsulated in a proxy object generated by
the IDL compiler for every IDL interface. The
proxy object provides the same methods as the
remote server object so that the client invokes
these methods of the proxy object just the same
as the remote server object. The proxy object
also provides other functions in our implementa-
tion, such as data consistency check discussed in
the next section. The default behavior of the im-
plementation skeleton is to register implementa-
tion definition to the ORB daemon, to create or
destroy the object reference, and to prepare to
receive the requests from the ORB daemon and
send the result to the ORB daemon. In our im-
plementation, a server corresponds to an ADS
application software module. Each application
software module can contain multiple active
objects of a given implementation. The Interface
Repository provides type information for other
application modules to check type dynamically.

Execution Management Module in ACP is
modified to support part of BOA’s functionality,

115

Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE
Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE

which is to maintain implementation repository,
bind the client to the server object in the
software application module and activate the
application software module according to the
information in the implementation repository in
the response to the remote object requests.

4. Extending CORBA to support ADS
characteristics

In order to maintain ADS characteristics of
on-line maintainability, on-line expandability
and fault-tolerance, CORBA needs to be
extended to support object group, state transfer,
data consistency check and object migration.

4.1. Object Group

Fault-tolerance can be achieved by
replicating the server object in different Atoms to
form an object group to respond to the requests
from a client. Basically, there are two kinds of
replica. One is Active Replica, in which every
server object in the object group responds to a
request. If at least one object in the object group
works, the client gets the services. However, in
Active Replica, each object in the object group
needs to be consistent with each other. If one
object in the object group fails, it needs to be
restored to the same state of the other objects.
Another is Passive Replica in which only one
object as the primary object responds to the
requests from a client, other objects act as the
backup objects. Once the object fails to provide
the services, one of the backup objects takes over
and continues to provide the services. In Passive
Replica, it takes time for the backup object to get
to the same state as the primary object. Active
Replica Object Group is correspondent to replica
application software modules in ADS. In our
implementation, we select Active Replica Object
Group, and proxy object in a client is bound to
an active replica server object group instead of a
single object implementation shown in Fig. 3.

Group object communication protocol in our
CORBA implementation is a broadcast protocol
since ADS is built over a reliable LAN which
provides broadcast. In our group object
communication, each message is broadcasted
with a header, in which there is a message
identifier containing the identity of the
broadcasting ORB daemon, a message sequence
number, and content code. The operation of

. _ _ _ _ _ _ .- _ _ _ .
: Ache Replica :
: Object Group :
i IAtom Ii

Fig. 3. Active Replica Object Group

group object communication protocol is
illustrated with the following scenarios:

l When a client calls an object’s binding
operation, the ORB daemon A broadcasts a
message with reserved content code for the
server object binding. The data field of the
message includes interface name, object name.

l The ORB daemon B which receives the
A’s message checks if there is the required
server object in its own host which can provide
the services and broadcasts an acknowledgment
message indicating whether it can provide the
services. The ORB daemon C on receiving the
B’s acknowledgment message will check if it has
received A’s message. If so, it acknowledges A’s
message by broadcasting a message indicating
whether it can provide the services. If not, it
broadcasts a negative acknowledgment message
indicating that it has not received A’s message.
Any ORB daemon which receives C’s negative
acknowledgment message will rebroadcast A’s
message if it has received A’s message.

l The ORB daemon A collects all
acknowledgment messages within some time
interval, builds an object group for this client,
assigns an In content code and Out content code
for the object group and broadcasts a message to
inform all the ORB daemons of the creation of
an object group. The message includes the
assigned content codes and the group member
list. Each member in the object group will use
the same content codes in the following
communication.

l All ORB daemons which can provide
services activate -ADS application software
module in which the server object in the object
group resides to prepare for receiving the
requests from the client.

116

Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE
Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE

l The client initiates a request by asking
the ORB daemon A to broadcast the request.

l An ORB daemon D in the object group
receives the A’s request, and checks the
sequence number in the message to see if it is
more than one greater than the largest sequence
number it received from source A. If not, it
processes the request, records the sequence
number in the message, calls the method of the
server object, and broadcasts the
acknowledgment message in which the result is
packed. Otherwise, it has missed some messages
from source A, and broadcasts an
acknowledgment message indicating that it
cannot provide the service and asks for state
transfer. State transfer is equivalent to method
invocation on one of the other objects in the
same object group to transfer to that object’s
state. After receiving D’s acknowledgment
message, the ORE3 daemon E will respond to A’s
request in the same way as D by broadcasting
acknowledgment message for A’s request if it
has received A’s request. If it has not received
A’s request, it will broadcast a negative
acknowledgment message for A’s request. Any
ORB daemon which received E’s negative
acknowledgment message (including A) will
rebroadcast A’s request if it has received A’s
request.

l The ORE3 daemon collects all
acknowledgment messages within some time
interval, uses threshold-voting mechanism to
select the most-likely correct result, and
forwards it to the client.

l When the client exits, it asks the ORB
daemon to broadcast a message to inform each
member in the object group to release the
resource for the object group.

The group object communication protocol
described above can tolerate transient
transmission failure and provides the total order
of the messages and atomic delivery of the
messages to server-client group communication
over LAN in our CORBA implementation.
Hence, it guarantees that the state of the object
group is consistent if the server object does not
fail.

4.2. State Transfer

If a new object joins the object group or a
object recovers from failure, the object needs to
get to the current state of the object group. The
oldest object in the group will send its state to

the new object. During this period, the ORB
daemons will delay all the requests to the object
group until the state transfer is completed.

4.3. Object Migration

Sometimes, a member of the server object group
needs to migrate to some other machine in order
to achieve load-balancing and fault-tolerance.
The migration must not affect the services of the
server object group. A possible solution will
work as follows.

The server object leaves the server object
group and the executable image of the server
object is transferred to another Atom by
Construction Management Module in ACP. The
ORB daemon in that Atom will activate the
server object application module. The server
object will rejoin the server object group again
and restore to the current state of the server
object group by state transfer.

5. ADS Application Software
Development Framework based on
CORBA

Our framework for ADS application
software development based on CORE3A is
shown in Fig. 4. It is modified fi-om our object-
oriented software development framework for
ADS [S] [9].

Requirement Statement
Object-Oriented

) Requirement Analysis

Object & Dynamic Model
b

v
e

Module Description in DDL

C

0
n

Fig. 4. Our object-oriented framework for
ADS application software development

Our framework has the following phases:
object-oriented requirements analysis, system
design, implementation, allocation, verification

117

Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE
Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE

and maintenance. We start ADS sofhvare
development with a set of requirement
statements, which is transformed into the object
model and dynamic model using object-oriented
requirements analysis (OORA) technique. The
object model shows classes and their hierarchical
structures derived fi-om the knowledge about
application domain and the requirement
statements. The dynamic model shows a fmite-
state machine model for each class in the object
model. The object model and dynamic model are
represented by the module description in Design
Description Language (DDL) [S] in the system
design phase. Then, each module design in DDL
is implemented in C++ and the implemented
modules are allocated to processors. At the end
of each phase, the adequacy of the results of
each phase is verified. We have a CASE
environment to support all these phases. Our
CASE environment consists of CASE tools for
object-oriented analysis and system design [9],
object clustering [IO] and module allocation
Pll.

In our new framework, we add the support
for CORBA-based application software
development in all the phases and our CASE
environment. In the OORA phase, we will
emphasize the role of objects, persistency of
objects, object life cycle, association relationship
among objects, and data flow between the
producer object and the consumer object in order
to provide enough information for object
clustering [lo] and organize class inheritance
hierarchy to make full use of CORBA common
object services [6]. In the design phase, our
object-clustering CASE tool [lo] will cluster the
objects to the modules, identify the objects
which export their interfaces to other modules,
generate IDL interfaces according to the object
information in the object model, and use our IDL
compiler to generate IDL stubs and
implementation skeleton for the implementation
phase. In the implementation phase, each class is
implemented in C++ using IDL stubs and
implementation skeleton generated in the
previous phase, and then each module is
implemented in C++ using CORBA APIs. In the
allocation phase, our CASE tool will emulate the
real distributed systems by the workstation
cluster, allocate the modules to the workstations
according to our allocation algorithm [ll],
replicate the same module to different Atoms to
achieve fault-tolerance, verify the consistency
between the modules and the Atoms, run the

application to tune our allocation. During the
maintenance phase, the object implementation in
each module can be enhanced without affecting
the clients which use the services of the object
because CORBA completely separates the
interface from the object implementation.

6. An example

In this section, we will use an Automatic
Teller Machine (ATM) example [9] to illustrate
how our framework supports ADS application
software development based on CORBA. The
software requirements for the ATM system are
specified as follows:

Develop the software to support a
computerized banking system with automatic
teller machines (ATMs) to be shared by a
consortium of ban&. Each bank has its own
computer to maintain its accounts and make
updates to accounts. ATM. communicate with a
central computer of the consortium, An ATM
accepts a cash card, interacts with the user,
communicate with the central computer to
process transactions, and dispenses cash. For
simplicity purpose, the system is assumed to have
two AT&Is, two Banks and one consortium.

For the object-oriented requirements
analysis, we obtain the object and dynamic
models of the ATM system according to the
procedures in our framework [9]. The object
model is shown in Fig. 5.

Entered on -IConsists

I -I‘ I
Issues

I owns
I I

1 Card-Authorization 1)
-1

I
Bank Holds Account

I I I I

Fig. 5. The object diagram for the ATM system

For the system design, we first identify
objects and inter-object communications. In this
example, the objects are ATMl, Cash-Cardl,
ATM2, CashCard2, Consortium, Bar&l,
Transactionl, Bank2, Transaction2, Accountl,

118

Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE
Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE

Updatel, Card-Authorization1 , Account&
Update2, and Card-Authorization2 as shown in
Fig. 6. The inter-object communications are
showed by the lines with arrows in Fig. 6. In the
next step, we cluster the objects into several
modules shown in Fig. 6, where the objects in
the gray boxes are identified as the objects which
export their interfaces to other modules and IDL
interfaces are generated by IDL generator
according to the information in the object model.
Then, IDL stubs and implementation skeletons
are generated using our IDL compiler.

Fig. 6. The object clusters of the ATM example

For the implementation phase, the IDL stubs
are used by client objects to invoke the methods
of the remote objects, and implementation
skeletons are used to implement the remote
objects. For the allocation phase, we allocate the
modules to different Atoms as shown in Fig. 7.
The server object Consortium is replicated to
two different Atoms to form an active replica
object group to provide the services to other
modules to achieve fault tolerance. Bank1
module and Update1 module are allocated to the
same Atom since communication between these
two modules are heavy. Similarly, Bank2
module and Update2 module are allocated to the
same Atom. The two ATM modules are allocated
to two different Atoms.

7. Discussion and Future Work

In this paper, we have presented a
framework for ADS application software
development based on CORBA. We are
implementing the CORBA over ADS system
software, extending the CORBA to achieve ADS
characteristics, and modifying our CASE
environment for ADS application software

4tom5
=I

A i Active
. . ..-.-
: Replica

Fig. 7. Module Allocation
development based on CORBA. We also plan to
incorporate a performance monitor into the ORB
daemon in our implementation to obtain
communication traffic information among
different modules to dynamically support load-
balancing among the hosts and reconfiguration
of the application software modules by object
migration and achieve interoperability with other
CORBA implementations in the near future.

Since ADS has been successfully used in a
number of different domains, we plan to analyze
existing ADS applications in the different
domains using our framework, migrate existing
ADS applications to our CORBA-compliant
development and running environment, and
build domain-specific frameworks for ADS
applications.

In order to migrating existing ADS
application software modules to our CORBA-
compliant development and running
environment, we must encapsulate ADS
application software modules by IDL interface.
Basically, there are two ways for encapsulation.
One is coarse encapsulation, which specifies the

119

Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE
Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE

functionality of every ADS application software
module by IDL interface. The object
implementation just responds a request by
executing the executable image of the
application software module with different
parameters. Another is fine encapsulation, which
factors out the common functions among
different ADS application software modules,
encapsulates it as the common object services
available to every object, and rewrites ADS
application software modules as the application
objects using common object services.

Since many ADS applications are time
critical, we will extend our CORBA-based
framework for real-time systems. In order to
meet rigid temporal requirements in real time
systems, we must have high-performance
CORBA implementation which makes full use of
underlying communication link, like
Asynchronous Transfer Mode (ATM), and
provide Quality of Services(QoS) for distributed
objects accessible by ADS application
developers.

Acknowledgment

This work is supported under the
collaborative research agreement between
Arizona State University and Hitachi, Ltd.

References

1.

2.

3.

4.

5.

6.

7.

K. Kawano, M. Orimo and K. Mori,
“Autonomous Decentralized Systems: Concept,
Data Field Architecture and Future Trend”, Proc

First Int’l Symp. on Autonomous Decentralized
Systems, 1993, pp. 28-34.
K. Mori, et. al., “Autonomous Decentralized
Software Structure and its Application”, Proc.
FJCC’86, 1986, pp. 1056-1063.
Douglas C. Schmidt and Steve Vinoski,
“Introduction to Distributed Object Computing”,
C++ Report, January 1995.
Douglas C. Schmidt and Steve Vinoski,
“Modeling Distributed Object Computing”, C++
Report, February 1995.
OMG, The Common Object Request Broker:
Architecture and Spectjication, 2.0 edition, July
1995.
OMG, CORBAService: Common Object Service
Spectjkation, 95-3-3 1 edition, March 1994.
Microsoft, Distributed Component Object Model
Protocol - DCOM71.0, http://dsl .internic.netf
internet-drafts/draft-brown-dcom-vl-spec-00&t.

8. S. S. Yau and G.-H. Oh, “An Object-Oriented
Approach to Software Development for
Autonomous Decentralized Systems”, Proc
First Int’l Symp. on Autonomous Decentralized
Systems, 1993, pp. 37-43.

9. S. S. Yau, et. al., “An Object-Oriented Approach
to Software Development for Autonomous
Decentralized Systems”, Proc . Second Znt’l
Symp. on Autonomous Decentralized Systems,
1995, pp. 405-411.

10. S. S. Yau and H. Ying, “A Clustering Algorithm
for Object-Oriented Development of Distributed
Computing System Software”, Proc. 5th IEEE
Workshop on Future Trends of Distributed
Computing Systems, 1995, pp. 274-281.

11. S. S. Yau and V. R. Satish, “A task Allocation
Algorithm for Distributed Computing Systems”,
Proc. I 7th Znt ‘1 Computer Sofmare &
Applications Conf (COMPSAC 93), 1993, pp.
336-342.

12. Bhavani Thuraisingham, Peter Krup and Victor
Wolfe, “On Real-Time Extensions to Object
Request Brokers: A Panel Position Paper”, Proc.
Second Int’l Workshop on Object-oriented Real-
time Dependable Systems, 1996.

13. Gotter Sean, Inside Taligent Technology,
Addison-Wesley, 1995.

14. INOA Technologies Ltd, “The Orbix
Architecture”, January 1995, http: llwww-
usa.iona.com/www/Obix/arch/Summary.html.

15. John A. Zinky, David E. Bakken and Richard
Schantz, “Overview of Quality of Service for
Distributed Objects”, http: llwww.bbn.coml
offerings/dcutu/duduse/ Dualuse-final.html.

16. Jon Siegel, CORBA Fundamentals and
Programming, John Wiley & Sons, 1996

17. Kenneth P. Birman and Robbert Van Renesse,
“Reliable Distributed Computing with the Isis
Toolkit”, IEEE Computer Society Press, 1994.

18. Paul D. Ezhilchelvan, Raimundo A. Macedo and
Santosh K. Shrivastava, “Newtop: A Fault-
Tolerant Group Communication Protocol”, http:
//arjuna.ncl.ac.uk/arjuna/papers.html

19. P. M. Melliar-Smith, et. al, “Broadcast Protocols
for Distributed Systems”, IEEE Transactions on
Parallel and Distributed Systems, Vol. 1, No. 1,
pp. 17-25, January, 1990.

120

Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE
Proceedings of the 3rd Int'l Symposium on Autonomous Decentralized Systems (ISADS '97)
0-8186-7783-X/97 $10.00 © 1997 IEEE

