
An Approach to Distributed Component-based Real-time
Application Software Development

Stephen S. Yau and Bing Xia
Computer Science and Engineering Department

Arizona State University
Tempe, AZ 85287, U.S.A.

{yau, xia}@asu.edu

Abstract

Component-based software development would
allow application software be largely constructed,
rather than programmed. This approach would
dramatically improve the productivity of software
development. Although there are many reusable
software packages available, the integration of the
chosen parts remains to be a very difficult problem
because there are many barriers of integration,
including programming languages, operating
systems, communication mechanism, interface, etc.

In this paper, an approach to developing real-
time application software based on a distributed
component architecture and cross-platform and
cross-language integration of these software
components are presented. The Common Object
Request Broker Architecture (CORBA) will be used
in the implementation. Our distributed components
will satisfy easy retrieval and integration over a
heterogeneous distributed system environment. A
component replication mechanism is used for
providing fault-tolerance feature. Using object
adapters with real-time request monitor and
scheduler that are transparently generated by a
distributed component integration tool, real-time and
fault-tolerance features can be easily incorporated in
the application software.

Keywords: Component-based software
development, real-time application software,
distributed system, fault-tolerance, CORBA.

1. Introduction

Component-based software is a desirable concept
in constructing large-scale applications software [1].
By reusing well-developed software parts to
construct application software, the productivity of
software development can be dramatically improved.

Furthermore, there is a continuous need to upgrade
and reintegrate the existing real-time software
systems. For component-based software, this can be
achieved by replacing some parts of the system with
new components with compliant interface and
incorporating new technology inside. Comparing this
approach to traditional re-design and re-coding
methods, the cost for maintenance and upgrade will
be reduced dramatically. However, component-based
software development only recently appears to be
feasible. As the object-oriented software
development approach becomes more mature [1][2],
it helps the software developers solve some problems
in component-based software development such as
component decomposition and interface definition.
By revising the objects’ interfaces and properties in
the software components, applications can be largely
constructed, rather than programmed directly at the
object level.

There are already many reusable software
packages available [3]. For example, we can directly
select and use a toolbar or a text editor when we
develop a GUI software in any visual programming
environment without knowing its implementation
details [4][5]. Recently, two new component
specifications, Sun’s JavaBeans [6] and Microsoft’s
ActiveX Control [4][7][8], have expanded the reuse
paradigm to a wider range of software development,
such as compound documentation and Internet web
services [4]. But, the significant problem of the
chosen parts not fitting well together still remains [9]
because there are many barriers including
programming languages, operating systems,
communication mechanisms, interfaces, etc [10].
Furthermore, all these specifications do not address
real-time guarantees. To overcome these barriers, we
need a common distributed object-oriented
environment which offers a consistent view of
service access and covers most of the differences
from various operating systems, networks, and
programming languages. There are two popular

distributed object environments: Microsoft’s
Distributed Component Object Model (DCOM) [7]
and Object Management Group (OMG)’s Common
Object Request Broker Architecture (CORBA)
[11][12]. We will use the CORBA environment
because it is more widely available and allows the
integration of a variety of object systems through its
standard Interface Definition Language (IDL)
[11][13]. By separating object interface from its
implementation, it facilitates independently
developed components with compatible IDL
interfaces to be integrated into one application,
despite of their different implementations and
running environment requirements.

In this paper we will present an approach for
developing distributed component-based real-time
software and the associated tools for cross-platform
and cross-languages integration of real-time software
components in distributed object environments. In
Sections 2 to 4, we will describe our approach,
including a distributed component architecture, the
integration process and the central role of an
integration tool. In Section 5, we will discuss some
implementation issues. In Section 6, an example of a
real-time airline reservation system will be used to
illustrate our approach.

2. Our Approach

In a distributed system, it is common that
different hardware systems running on different
operating systems over different networks. To use the
resources in these environments, software developers
may choose different programming languages to
implement the client/server or group software pieces.
In order to make these software pieces to have the
capability and flexibility to interact with each other,
they should be developed by following a common
distributed component architecture which specifies
unified interfaces for method invocation, event
handling, fault-tolerance and real-time services.

In our approach, besides functional requirements,
a distributed component implements functions for
publishing its interfaces to let other components
know how to interact with this component through a
Distributed Component Common Interface, for
supporting group communication to satisfy fault-
tolerance requirements through a Component
Replication Interface, and for specifying real-time
constraints to its services through a Real-time
Specification Interface. All the interfaces are defined
using interface definition language (IDL) of a
common object environment, like CORBA.

Distributed components can be developed by
wrapping these interfaces to the legacy software
pieces. We can integrate these components into
application software using an integration tool at a late
stage. This tool allows the distributed application
developers to adjust the components to offer
preferable services and then connect the input and
output events and invocations to each other through
automatically generated component adapters. To
satisfy fault-tolerance and real-time requirements, the
integration tool also generates glue-code to maintain
component groups and to monitor/schedule real-time
invocations. Figure 1 shows our distributed
component-based software architecture composed of
the following three basic types of distributed
components:

Figure 1: Distributed component-based software
architecture

♦ Regular Components, which implement
the basic functions defined in the distributed
component standard interface in the Common
Object Environment.
♦ Group Components, which are redundant
copies of a component. They work together to
offer consistent and continuous services.
♦ Gateway Components, which act like a
gateway to a legacy software system. They
translate requests that come from the common
object environment into legacy requests and
relay results out to the common object
environment.

3. Distributed Component Architecture
(DCA)

A distributed software component is a software
piece which offers a set of services over a distributed
system through its self-describing interfaces that are
defined in a common representation language and its
interface for reconfiguring some of the properties at

IDL

IDL

Common Object Services

Distributed Component

Common Object Environment

Replicated Components

IDL IDL
 Gateway

Component Sub-
Component

Sub-
Component

Wrapping Legacy Software

assembly time to fit into a specific application. In our
distributed component architecture, we use CORBA
as the integration bus because it offers a consistent
distributed programming and run-time environment
over most popular programming languages, operating
systems and networks. Its Interface Definition
Language (IDL) is suitable for specifying the
component interface without the implementation
details. A component can be programmed in a variety
of languages on different operating systems (which
now includes almost all the popular programming
languages and operating systems). If a component
implements a common set of IDL interfaces, it can
interact with any other components through the
common object environment daemon running on its
native platform.

Each distributed component can be considered
as an individual software part that implements
component's common functions. All these common
functions are defined in three related interfaces that
together form a distributed real-time component
architecture as shown in Figure 2.

Figure 2: A distributed real-time component
architecture

In the following, we will explain the three basic
interfaces for a distributed real-time component:

3.1 Distributed component common interfaces

In order to offer a unified method for integration
between distributed components with IDL language,
a Distributed Component Common Interface is
defined using IDL. To support distributed integration,
this common interface includes the following four
types of services:
♦ Interface publishing and discovery

Every component is a functional unit that offers a set
of services through its public methods and data
structure interfaces. In the component common
interface, we define public methods which can return
service names and their invocation interfaces upon
being retrieved by an integration tool at the time of
distributed component composition. To find a proper
component that is offering the needed services, only
syntax compatibility is not enough. It happens all the
time that two methods or events with similar names
are doing very different tasks. So additional semantic
description about these public services should be part
of retrievable information for a distributed
component.
♦ Event handling
Every component receives incoming events as its
input and generates outgoing events as its response.
Besides these messages initiated by the components,
there are events generated by the systems like mouse
movements and exceptions. By defining a common
data structure for events, the component can use the
same method to accept different events and find the
corresponding handlers. This interface allows the
related components to react to remote events as well
as local events when they are happening on different
machines.
♦ Persistent state maintenance
During the integration and execution, some of the
public properties of a component can be modified by
the software developer or remote events. Persistent
state maintenance interface allows the distributed
components to store their states when the components
become inactive and to restore the states before they
are reactivated to offer consistent services through
unified persistence functions.
♦ Changeable properties support
This interface allows some attributes of a component
to be reassigned by the integration tool at the time of
application composition from components so that the
component can act according to the new values to fit
better into the current application.

3.2 Component replication interface

In order to offer fault-tolerance feature in
distributed component-based software, a component
can implement additional functions to maintain a
replication components group to enhance the
availability and provide a certain degree of fault
tolerance [15]. A critical service can be offered by
several replicated components that reside in different
hosts or processes. The replication interface will
allow the replicated component group to initiate a
global search-and-invoke when a request invokes
their services. When some of the replicas that offer

Replication Interface

C
o

m
po

n
ent C

o
m

m
o

n Inte
rface

Component

Objects

C
om

m
on O

bject Environm
ent

C
om

m
on O

bject Environm
ent

Real-time Interface

Changeable
Properties

Out-Events

In-Events

ExceptionsRT requirements

ExceptionsStates

Figure 3: Our integration process of distributed components

the service are down, the others can still be found and
respond to the request.

A key problem that needs be solved in
distributed component replication is how to keep the
state consistency among the replica [17]. The
necessary functions that each replicable component
needs to be implemented are defined in IDL format
as Distributed Component Replication Interface,
which includes the following two basic services:
♦ Run-time component state retrieval and

update
These functions have the capability to combine
component state variables into a predefined format
(e.g. string stream) and the receiver of this state
information could update its internal variables
accordingly. All the replicas will interact through this
interface to update or reconstruct their states.
♦ Exception handling
When one or several members of the replicated
component group are down because of process crash
or network connection being broken, the group
should have the ability to renew their membership
lists to exclude the mal-functional members. A client
may connect to anyone of the member component by
looking out the group name. When this component
detects failure as it tries to communicate with other
members, its exception generating method will
invoke other members' exception handler methods for
group states update.

3.3 Real-time specification interface
Real-time components have time-bounded

requirements for remote method invocations. Inside a
real-time component, the designer can carefully

arrange the invocations and use effective techniques
like multithreading and zero-buffering [18] to reduce
the delays [19]. But, the major delays are usually
caused by the outside communication like events
transferring from component to component on
different hosts.

To satisfy the real-time requirement, a run-time
system with real-time invocation monitor and
scheduler is required as a supplementary layer by
interacting with the component through the real-time
specification interface. This interface includes two
main services:
♦ Real-time requirements specification
These functions specify the processing time ranges
for the member methods that handle incoming events
and the time bounds for outgoing remote method
invocations of a real-time component. These
requirements could be dynamically modified at the
run-time according to previous processing or request
history, or the change of states in the component if
necessary.
♦ Exception handling
These functions can be called by the run-time
monitors or schedulers as encountering exceptions
like time bounds which cannot be satisfied during a
remote method invocations.

4. Distributed Component Integration
The goal of defining distributed component

interfaces is to support distributed real-time
application software development through
component integration. The integration process can
be described in Figure 3. A distributed component
can be developed by wrapping a legacy software unit

Distributed Component Common Interface

IDL

IDL IDL

Integration Tool

adapter IDL
IDL

Real-time
adapter

Common Object Environment
Distributed Component-based Software

Component Replication Interface Real-time Specification Interface

Sub-component Legacy software unit

wrapping

Distributed component

wrapping wrapping

Replicable component Real-time component

Interact with

generate generate

Replicated components

Common Object Environment (C O R B A)

IDL

group
adapters

adapter Integration
Tool

interact with

generate

CORBA Services CORBA Facilities

properties
IDL IDL

adapter

IDL

real-time
monitor/
scheduler

generate

Figure 4: The role of the integration tool in constructing
 distributed component-based software

with the Distributed Component Common Interface.
In addition, if the software unit also implements the
Component Replication Interface, it has the
capability to work as a group member. If it also
implements the Real-time Specification Interface, it
has the information and capability for real-time
method invocations.

The next step is to compose distributed software
from independently developed components. The
integration is an interactive process of the user with
an integration tool that understands these component
interfaces and has the capability to ‘glue’ and ‘tailor’
these separate components into a system.

This component integration tool can interactively
put the components together and to automatically
generate skeleton and repetitive code for the
components. Microsoft's Development Studio, Sun’s
Visual Studio and Borland's Delphi are such popular
environments using visual programming, which
allow programmers to visually compose application
software using existing software components[16]. It
enables rapid prototyping and rapid application
development (RAD).

Traditional integration environments do not
support distributed component integration. In our
approach, we have developed a visual integration tool
with transparent glue-code generation to facilitate
integration and replication of distributed components.

Figure 4 describes the central role of the
integration tool in real-time distributed application
software development. Its basic functions are:

♦ Visualize the distributed components and
their interfaces
The integration tool allows the software
developer to open the components that can be
retrieved over the common object environment
to construct a whole software structure using

Drag-and-Drop.

♦ Generate component adapter
The integration tool generates an adapter for
each component to link distributed methods
using Distributed Component Common Interface
based on user interaction. The link information is
not available when a component is built. Only at
integration stage, the developer specifies source
and target methods of connections. The adapter
stores this information for its component and
establishes remote method invocations through
the common object environment at run-time.

♦ Modify properties
The tool lists the public changeable properties of
a component and allows the developer to modify
their values so that a versatile component can be
tailored to a specific application system.

♦ Generate group adapters
To achieve application-transparent state
consistency among replicated distributed
components, we use special group adapters with
extra negotiation methods besides regular
components. At the time of integration, the
integration tool assigns the membership list and
its prime membership ID into each group
adapter’s changeable attributes. Upon receiving
remote requests, a group adapter forwards them
to the prime member who will then broadcast to
the others. All members of the group respond in
the same way and therefore update their states
accordingly while only the prime component will
be allowed to send out remote requests through
its group adapter if the current request triggers
other components. If a member fails to contact

the prime host, it will broadcast exception to all
the remaining members using Distributed
Component Replication Interface, negotiate for a
new prime replica, retrieve and re-establish state
consistency when a new member joins as a new
backup component.

♦ Embed real-time request monitor and
scheduler into the adapter

For real-time components, their requests and
responses need to be monitored and sorted [14].
The real-time request monitor is embedded on
the out-going request component side. It keeps
track of history response time and makes
estimation on next response time. If it finds it is
impossible to satisfy the time bounds
requirement for a request, or after timing the
possible request for close to the required time
period, it will cancel the request and call the
exception function of its component through
Real-time Specification Interface. The real-time
scheduler is embedded in components that accept
incoming requests. It queues, sorts and releases
method requests according to their emergency of
the time limits to improve the response time. It
also handles request cancellation for expired
method invocation.

5. Implementation

We have developed a prototype of the distributed
component interfaces, the integration tool and
associated supporting adapter libraries based on
IONA’s Orbix 2.2 CORBA environment. This
prototype is used to present and test the capability
and efficiency of distributed component-based real-
time application software development through cross-
language (C, C++, Java) and cross-platform
(Windows95, NT, Solaris) component integration.

5.1 Distributed component interfaces
The distributed component interfaces are defined

in IDL 2.0. They can be translated into C/C++ on
either Solaris or Windows 95/NT using Orbix 2.2’s
IDL compiler. We also use IONA’s Java version
CORBA --- OrbixWeb 3.0β to generate Java code
from those IDL interfaces.

For interfaces publishing and discovering, every
component registers its interfaces in CORBA’s
standard Interface Repository. By retrieving these
interfaces from the multiple CORBA daemons, a
component can discover compatible components that
reside on different systems to interact with. To
support accurate integration of components, instead
of directly retrieving class information, we decide to

have an Interface Descriptor which needs to be
implemented for every distributed component. The
interface descriptor includes a component’s public
method names which can be used to further retrieve
signatures and the corresponding semantic
description strings which can be prompted to the
software developer to help him select correct
components and methods in the system.

To handle remote events, a RemoteEvent class is
defined as a base class for a component developer to
define his own events, including names, properties
and handlers. This allows the integration tool to
retrieve event types and bind different outgoing
events to the proper remote handlers using the same
glue-code.

5.2 Integration tool
The integration tool, which is developed on both

Windows 95/NT and Solaris, is a distributed software
package based on Orbix. When it finds methods and
events that defined in distributed components and
displays them as icons under a component structure
tree. Software developer can drag these icons to a
working area and modify their public attributes and
select a proper remote handler for the outgoing
events of the components.

Because at the time of integration, the
components are already in the mode of unchangeable
executable files, it is improper to attach the adapter
code directly to the component. We use a separate
process on the same host to act as the adapter for
each component so that the connection time between
a component and its adapter will not be affected by
network status which allows the real-time requests to
be accurately monitored. Instead of generating all the
glue-code at running time, the adapters, group
adapters and real-time monitors/schedulers are pre-
developed. At the time of integration, the tool
specifies the connection source and destination to the
adapter processes. Different adapter processes
(regular adapter, group adapter, real-time adapter) are
selected by the tool based on the type of the
components (regular, replicable, real-time).

In a replicated component group, all the
members’ adapters share the same service name and
only distinguish themselves by sub-names (like
marker in Orbix [15]). As long as one of the member
components is working, the client still can connect to
the services through CORBA standard name binding
service. When this component tries to broadcast the
client requests to the others, it can detect the failure if
some were down. It will send out exception events to
the remaining members that will be handled through
the exception handler functions to reconstruct the
group.

When a component sends out a real-time request,
its adapter will start a real-time monitor thread to
time and record the response, and will generate
exception events when the time is out. If a
component offers real-time services to others, its
adapter will incorporate real-time scheduler method
which maintains a sorted request buffer according to
the degree of emergency.

6. An Example

We will use a simple airline reservation system
to demonstrate our approach. This system has several
client consoles that can accept requests from end
users and send requests to two travel agents that run
on different hosts. If possible, the agents will offer
the discount fares through a special booking approach
with the airline. The airline system is running on
several redundant servers to ensure its availability.
The component architecture of the system is shown
in Figure 5.

For this system, we define three kinds of
distributed real-time components: Client, Agent, and
Airlines. They are developed independently using
different languages on different operating systems.
The Distributed Component Common Interface has
been implemented. All the public methods of the
components are blocking invocations with return
values.

♦ Client
Client component acts as the customer of this
reservation system. It has two outgoing methods:
MakeQuery (flight information), MakeReservation
(ticket) and two changeable properties: aName (of
client), aMaxWaitingTime (in seconds). The latter
property specifies the real-time requirements for both
outgoing methods. The Client component is
developed using Java on Windows NT 4.0.

♦ Agent
This component acts as a travel agent. It has three
incoming methods: AcceptQuery, Accept-
Reservation, and AcceptDiscountReservation, and
three out-going methods: MakeQuery, Make-
Reservation, and MakeDiscountReservation. Its
changeable properties are aName(of Agent) and
aIsDiscount. If the latter property is true, the
component is allowed to use method
MakeDiscountReservation to connect to another
agent’s discount service. This component is
developed using C++ on Windows NT 4.0.

♦ Airlines
Airlines component commits all the reservation and
return flight information based on queries. It also
implements Component Replication Interface that
allows a group of Airlines components to work
together as a fault tolerant software unit. It has two
incoming methods: AcceptQuery, AcceptReservation
and one changeable property: aName(of Airline). It is
developed using C++ on Solaris 2.6.

10

Client

“B” 2

Client

“Yahoo” True

Agent

“MSN” False

Agent

Airline

Query

Reservation

Query

Reservation

Query

Reservation

Discount
Reservation

Query

Reservation

Discount
Reservation

Query

Reservation

Discount
Reservation

Query

Reservation

Discount
Reservation

Query

Reservation

“UA”

Java/NT
enpc978

Java/NT
enpc667

C++/NT

enpc666

C++/NT

enpc665

enws631
enws632
C++/Solaris

Name

“A”

WaitTime

Name WaitTime

Name IsDiscount

Name IsDiscount

Name

Figure 5: The component architecture of a simple Airline Reservation System

At the time of integration, two Clients components
(“A” and “B”) on two hosts enpc978 and enpc667,
two Agents components (“Yahoo” and “MSN”) on
hosts enpc666 and enpc667, and two replicated
Airlines components (“UA”) on two workstations
enws631 and enws632 are “glued” together through
the automatically generated adapters which in this
case all include real-time monitor/scheduler.

The integration tool retrieves all the public
methods and changeable attributes from the Interface
Repository on the remote hosts and generates
connection adapters to relay remote events or
exceptions to the components and assigns the
connection adapters to each component through the
predefined methods in Distributed Component
Common Interface. The developer can also modify
some attributes according to the application design
(like aName, aIsDiscount, etc.). In this example,
Client A has larger invocation time range than B, and
hence its requests have lower priority than those from
B in the real-time scheduler of Agent component.
Agent Yahoo is allowed to make discount reservation
through Agent MSN’s AcceptDiscountReservation
service because its property aIsDiscount is set to be
true by the application developer. The two replicated
Airlines components reside on different machines
and share the same server name “UA” to form a fault
tolerant service group.

7. Discussions

In the paper, we have presented an approach to
distributed component-based real-time application
software development. We have defined a distributed
component common interface using CORBA’s IDL.
In order to have fault-tolerance feature in component-
based software, a component replication mechanism
was also developed. A real-time specification
interface allows the run-time method invocations and
offers timing-out exceptions handling through real-
time monitor/scheduler. Since the monitor/scheduler
also runs as a process in the local operating systems,
the operating systems’ real-time process/thread
scheduling is required for satisfying hard real-time
requirements. To implement this integration method,
we have developed a CORBA-based integration tool
with transparent glue-code generation to facilitate
integration and replication of distributed real-time
components. This distributed real-time component
architecture divides the distributed application
developing effort to two parts: component building
and application integration which reduces the design
and programming effort and improves the

productivity of software developers and quality of
software products.

References

[1] O. Nierstrasz, S. Gibbs and D. Tsichritzis,
“Component-Oriented Software Development”,
Comm. ACM, Vol.35 No. 9, September 1992,
pp.160-164.

[2] S. S. Yau, D. H. Bae and K. Yeom, “Object-
oriented Development of Architecture
Transparent Software for Distributed Parallel
Systems”, Jour. Computer Communication,
Vol.16 No.5, May 1993, pp. 317-327.

[3] R. M. Adler, “Emerging Standards for
Component Software”, IEEE Computer, Vol.28
No.3, March 1995, pp. 68-77.

[4] J. Montgomery, “Distributing Components”,
Byte, April 1997, pp. 93-98.

[5] R. N. Taylor, N. Medvidovic, D. L. Dubrow and
etc, “A Component- and Message-Based
Architectural Style for GUI Software”, IEEE
Trans. on Software Engineering, Vol.22 No.6,
June 1996, pp.390-396.

[6] Sun Microsystem, JavaBeans Specification,
Version 1.0, 1997.

[7] Microsoft Corporation, The Component Object
Model Specification, 1995.

[8] Sun Microsystem, Component-Based Software
with Java Beans and ActiveX, whitepaper,
http://www.sun.com/javastation/whitepapers/ja
vabeans/javabean_ ch2.html, 1996.

[9] D. Garlan, R. Allen, and J. Ockerbloom, “Why
Reuse is So Hard”, IEEE Software, November
1995, pp.17-26.

[10] ComponentWare Consortium, Realizing a
Virtual Application Warehouse Using
ComponentWare, CWC whitepaper,
http://www.componentware.com/vaw_wp.
htm, June 1995.

[11] Object Management Group, The Common
Object Request Broker: Architecture and
Specification, Revision 2.0, 1995.

[12] J. Siegel, CORBA Fundamentals and
Programming, Wiley Computer Publishing
Group, 1996.

[13] D. A. Lamb, “IDL: Sharing Intermediate
Representations”, ACM Trans. on
Programming Languages and Systems, Vol. 9
No. 3, 1987, pp.297-318.

[14] J. Fraga, J. M. Farines, O. Furtado and F.
Siqueira, “A Programming Model for Real-

Time Applications in Open Distributed
Systems”, Proc. Fifth IEEE Computer Society
Workshop on Future Trends of Distributed
Computing Systems, August 1995, pp. 104-
111.

[15] ISIS Distributed Systems, IONA Technologies,
Orbix+Isis Programmer’s Guide, Version 1.1,
March 1996.

[16] S. P. Reiss, “Connecting Tools Using Message
Passing in the Field Environment”, IEEE
Software, pp. 57-66, Vol. 7 No. 4, July 1990,
pp. 57-67.

[17] M. Maekawa, A. E. Oldeheoft, and R. R.
Oldeheoft, Operating Systems Advanced

Concepts, Benjamin/Cummings Publishing,
1987.

[18] D. C. Schmidt, A. Gokhale, T. H. Harrison and
G. Parulkar, “A High-performance Endsystem
Architecture for Real-time CORBA”, IEEE
Communications, Vol.14, No.2, February 1997,
pp. 34-41.

[19] S. S. Yau and D. H. Bae, "Object-Oriented and
Functional Software Design for Distributed
Real-Time Computing Systems," Jour.
Computer Communications, Vol. 17, No. 10,
October 1994, pp. 691-698.

