
 Situation-Aware Access Control
for Service-Oriented Autonomous Decentralized Systems

Stephen S. Yau, Yisheng Yao, Vageesh Banga
Department of Computer Science and Engineering

Arizona State University
Email: {yau, yisheng.yao, vageesh.banga}@asu.edu

Abstract

Service-oriented autonomous decentralized systems

(S-ADS) have been presented to address the extreme
dynamism in large-scale information systems. In S-
ADS, various capabilities are independently
constructed and managed by different providers as
autonomous services that are distributed over various
types of networks, including wireless and wired
networks. One of the key challenges in S-ADS is to
have an effective access control mechanism that can
meet the dynamic and diverse security requirements of
various users and providers of an S-ADS system.

Current access control mechanisms can hardly meet
this challenge due to lack of situation-awareness. In
this paper, a situation-aware access control approach
is presented, which is middleware-based and integrates
situation-awareness capability and Role Based Access
Control (RBAC) models to provide a practical solution
for access control in S-ADS. The situation-aware
RBAC model is designed for specifying dynamic access
policies in an S-ADS system. Due to the situation-
awareness capability of our approach, flexible and
high-grained access policies can be specified and
enforced for various providers and users.

Keywords: Access control, situation awareness,
service-oriented computing, role-based access control,
middleware-based, smart classroom

1. Introduction

Recently, service-oriented autonomous

decentralized systems (S-ADS) have been presented to
address the extreme dynamism in large-scale
information systems [16, 18, 21]. In S-ADS, various
capabilities are independently incorporated and
managed by different providers as autonomous
services [11, 16, 19] distributed over various types of

networks, including wireless (infrastructure or ad hoc)
and wired networks. The roles of users and providers
can be dynamically changed in different situations. If
necessary, and the autonomous users and providers
may form a group, called an autonomous community,
for cooperation. One of the key challenges in S-ADS is
to have an effective access control mechanism that can
meet the dynamic and diverse security requirements of
various users and providers in S-ADS. This is very
important for S-ADS to be acceptable for various
applications, where only authorized users can access
the services of S-ADS systems. Hence, it is necessary
to have an effective access control mechanism that is
flexible, scalable and adaptable to the changing user
requirements and environment of S-ADS. The inherent
ad hoc nature of S-ADS with users coming and leaving
frequently does not allow S-ADS to define the access
rights in advance. Current approaches to access control
in distributed systems fail in S-ADS due to the
assumption that S-ADS have only relatively static
security requirements [8]. Access control policy
specification languages for service-oriented systems
have been developed [2, 17] for separating policy
specification and policy enforcement so that access
control policies can be easily administrated. New
access control mechanisms to satisfy these specific
requirements are needed in S-ADS systems.

 In this paper, we will present a situation-aware
access control (SA-AC) model for S-ADS and a
middleware-based approach for enforcing SA-AC
policies in S-ADS based on our SA-AC model. Our
SA-AC model will incorporate situation-awareness
constraints into role-based access control model
(RBAC) [1, 22], Our middleware-based approach will
enable users to enforce SA-AC policies for SA-ADS
efficiently. Our approach is based on our SA-AC
model, a policy specification language for specifying
SA-AC policies, and a situation-aware middleware [25,
26] for monitoring situation changes and providing
run-time support for enforcing SA-AC policies in S-
ADS.

2. Requirements of Access Control in S-ADS

Before presenting the requirements of access

control in S-ADS, let us consider an example with
collaborative learning using a Smart Classroom [23] as
shown in Figure 1, where students are in a class
“Software Engineering Project (SEP)”. Students in this
class are divided into small groups (with 5-7 students
per group) to practice a software engineering project.
Each student as well as the instructor in the Smart
Classroom carries a PDA or a Tablet PC. In this
example, both PDAs and Tablet PCs are considered
mobile devices equipped with a situation-aware
middleware, like the Reconfigurable Context-sensitive
Middleware RCSM [25], and various sensors, such as
sensors for location, noise and light. Each student
group has a member, called SQA, taking care of
Software Quality Assurance and another member,
called Outsourcing Manager (OM), in charge of
outsourcing. SQA monitors and coordinates the
software development process and evaluates the
product. OM manages the outsource contracts of
appropriate components to other groups and the
subcontracts from other groups. OMs from different
groups get together to find the OMs appropriate
subcontractors, represented by the dashed line as
shown in Figure 1. Students of a group discuss various
aspects of analysis and design of the group project,
incorporate useful members’ inputs, and make
necessary changes to the documents. The instructor
often participates in the group discussions and gives
feedback to the groups. Each group may have a
backup for the SQA in case the SQA is not available in
the Smart Classroom.

Figure 1. An example -- collaborative learning
in Smart Classroom

For this scenario, a set of autonomous services are

deployed on each PDA. For illustration purpose, we
list three of these services as shown in Table 1. During
runtime, these PDAs are autonomous, but they often
need to collaborate to complete a task. If any service
on a PDA becomes unavailable due to some reasons,
such as overloaded by other tasks or not installed by

mistake, then the PDA can search in the group to find
and utilize available related services on other PDAs.
Each group can be considered as an autonomous
community. The OMs getting together to negotiate the
outsourcing contracts form an autonomous community.

 The instructor requires that each group should keep
its development information confidential, except for
the parts required for the subcontractors for
outsourcing. In order to do this, the following access
control policies need to be enforced by a group:
a) Only when the user with the role of SQA is in the

Smart Classroom during the class time, he/she can
create a group discussion by calling CreateGroup
of ogm.

b) When the SQA is not available in the group, the
backup SQA can take place for SQA.

c) Only during the class time, the user with the role
of the instructor can join any group discussion.

d) Only the OM can call Request of oom to send an
outsourcing request to the OM of another group.

e) Users can invoke service odm only during a group
discussion and after two or more users joined the
group.

Table 1. Sample services for the example

 Assuming that a user is already authenticated by
the system utilizing existing technologies, such as
Public Key Infrastructure (PKI) or threshold
cryptography [9, 14, 27], the following access control
requirements are needed for specifying and enforcing
the acess control policies.
R1) Separation of duty: Separation of duty (SoD) is

considered valuable in deterring fraud since frauds
can occur if an opportunity exists for collaboration
between various users. Users in each autonomous
community should be restricted under separation
of duty constraints. “Separation of duty”
requirement has been well studied in role-based

Service Name Functionality
odm:
Documentation
Management

1. SendDocument: send documents to all
group members or specified user(s).

2. RetrieveDocuments: retrieve documents
from specified user(s) or all group
members

3. EditDocument: change a specified
document

ogm:
Group
Management

1. CreateGroup: initiate a group discussion
2. JoinGroup: for user to join a group
3. Scheduler: for SQA to arrange the

development schedule, including group
meetings.

oom:
Outsourcing
Management

1. Request: for OM to send a outsourcing
request to an OM of other group

2. QueryStatus: for OM to get the
development status of the outsourced
software component

access control models [1, 4, 10, 13]. It can be
either static or dynamic. Static separation of duty
(SSoD) requirements can be implemented simply
by statically restricting assignment of individual
users to roles. For example, we can only assign the
role of OM to one user of each group in the above
example. Dynamic separation of duty (DSoD) is
more difficult since the requirement can only be
satisfied during system operation. However, DSoD
allows more flexibility in system operation. For
example, at any time instance, the role of SQA
should be assigned to only one member of each
group in the above example, but when the current
SQA becomes unavailable, the backup SQA
member will take place of the SQA.

R2) Decentralized and distributed access control. As
shown in the above example, various access
control policies from users, services and their
communities need to be considered. These policies
can be specified by various parties and stored in a
decentralized environment. In order to enforce
these policies, a mechanism for locating, retrieving
and authenticating the policy components is
needed. Policies defined by various parties may
not be compatible and a method dealing with the
compatibility of different policies related to an
access decision request is needed.

R3) Dynamic and simple access policies. In S-ADS
systems, smooth and secure interactions between
the participating users and services require flexible
access control policies, which should be able to
address the highly dynamic and heterogeneous
nature of the S-ADS environment. For example,
in the above example, when the project is
completed and the group allocation may change.
This requires that access control policies be easily
updated and understood by users.

3. Current State of the Art

In role-based access control models [1, 22], RBAC2

defines constraints, which can be designated for user-
role, role-permission and session-role assignments.
RBAC is a promising solution for distributed
environment. However, all RBAC models are
relatively static [22]. Although most research has
focused on specifying constraints for RBAC models [1,
3, 13], these approaches are often very complex and
difficult to use to address the dynamism of S-ADS.

Context-based access control systems [7, 15] have
been discussed in depth. For example, Covington et al
[8] defined the environment context as an environment
role. Permissions are assigned to the subjects if the
environmental roles are evaluated as true based on the
current context value. In most of these systems, context

defines the current activity under which a subject is
trying to access an object and depending on the current
context the permissions are restricted. Access control
can also depend on a certain sequence of events.
Cholweka et al presented a context-sensitive access
control model, in which the rights are granted based on
the actual task [6]. These context-based access control
approaches can be considered as special cases of our
SA-AC approach because the situation in SA-AC is
much broader than the context in these approaches.

For access control in service-oriented computing
systems, Johnson, et al [12] presented an access
control mechanism that enables multiple owners and
administrators to define usage policies in the
distributed system. Chadwick and Otenko [5] used the
role-based access control model to provide access
rights for the authenticated users of the system.
Periman, et al [20] developed a mechanism for
providing access to all the members of a community.
These access control mechanisms mainly focus on
static attributes, where access depends on the identity
of the subjects involved. Another problem is that they
require a centralized policy repository, which may not
be available in S-ADS.

For security policy specification, several languages
to specify security policies in distributed systems have
been developed, such as SAML [17] and XACML[2].
SAML is an XML-based security language for
exchanging authentication and authorization
information, but it puts too much burden on services
themselves by requiring them to gather the evidence
needed for policy decision. XACML intends to provide
a common language for specifying a wide-range of
access control policies, but it still needs models for
representing and analyzing the conditions of access
control policies.

4. Situation-Aware Access Control Model

In this section, we will present our situation-aware

access control (SA-AC) model for expressing dynamic
access control policies. Figure 2 shows our SA-AC
model, which extends the basic RBAC model by
including the constraints in user-role and role-
permission assignments as situations. A situation is
defined as “a expression on previous device-action
over a period of time and/or the variation of a set of
contexts relevant to the application software running
on the device over a period of time” [26]. A context is
defined as “an instantaneous, detectable, and relevant
condition of the environment or the device, such as
time, location, light-intensity, noise-level, and
available bandwidth” [26]. The situation information of
a device in S-ADS can represent the access condition
of the device and define the dynamic trust associated

with each of its users, thereby determining the access
rights granted to him/her

Here, we use set theory to represent our SA-AC
model so that it can have a simple syntax for easy
understanding.

Users Roles Permissions

Role Hierarchy

User-Role
Assignment

Role-Permission
Assignments

Situation
Constraints

Figure 2. Overview of our SA-AC model

First, we define the following sets which are similar to
traditional RBAC models:
• U = the set of users in the autonomous community
• O = the set of services to be provided and utilized in the

autonomous community
• R = the set of roles defined inside the autonomous

community. 2R is used to represent the power set of R
• P = the set of permissions (or functions) defined on O
• RH (⊆ R × R), the partial order (≥ dominance) relation on

R, i.e. RH is the hierarchical structure of roles
• UR (⊆ U × R), the set of user-role assignments
• RP (⊆ R × P), the set of role-permission assignments
Then, we model SA constraints in user-role and role-
permission assignments as follows:
• SE = the set of situation expressions. We use 2SE to

represent the power set of SE.
• SEUR ⊆ 2SE × UR, the set of situation-aware user-role

assignments. seur = (Lse, (u,r)) (∈ SEUR), defines
that only if all the situation expressions in the
situation expression list Lse (⊆ SE) are true, the
assignment (u, r) (∈ UR) is active.

• SERP ⊆ 2SE × RP, the set of situation-aware role-
permission assignments. serp = (Lse,(r, p)) (∈ SERP),
defines that only if all the situations in the situation
list Lse (⊆ SE) are true, the assignment (r, p) (∈ RP)
is active.

The following utility functions are defined on the
above sets for facilitating the evaluation of access
control policies:
• situation(seur): SEUR {true, false} is a function

returning the conjunction of all the situation
expressions in an seur, i.e. situation(seur): = ∧ {sei |
seur=(Lse,(u,r)) ∧ sei∈Lse}. We call situation(seur)
the status of the assignment seur. If it returns true
then the assignment seur is active. Otherwise, seur
is inactive.

• situation(u, r): UR {true, false} is a function returning
the disjunction of the status of all seur related to (u,
r), i.e. situation (u, r) = ∨{situation(seur) | seur ∈
SEUR}. We call situation(u, r) as the status of the
assignment (u, r). If it returns true, then the
assignment (u, r) is active. Otherwise, (u, r) is
inactive.

• situation(serp): SERP {true, false} is similar to the
function situation(seur). We call situation(serp) the
status of the assignment serp. If it returns true,
then the assignment serp is active. Otherwise, serp
is inactive.

• situation(r, p): RP {true, false} is similar to the
function situation(u, r). We call situation(r, p) the
status of the role-permission assignment (r, p). If it
returns true, then (r, p) is active. Otherwise, (r, p)
is inactive.

• roles(u): U 2R is a function returning the roles assigned
to the user u under the current situations, i.e. roles(u)
= {r |(∃r’) [r’∈R ∧ (r’ ≥ r)∧ situation(u, r’)]}

Finally, a situation-aware access control policy
decision sapd is defined on U×P as follows:

sapd =({(u, p) | (∃r) [r∈roles(u)
 ∧ situation(u, r) ∧ situation(r, p)]} ≠{})

The functions situation(u, r) and situation(r, p) search
for all active user-role and role-permission assignments
that are related to the specified u and p. sapd checks
whether there is a role that is activated under current
situation for u to acquire p. If we can find such a role
in the role hierarchy, then sapd will be true, and the
access decision will be positive.

5. An SA-AC Policy Language

We have developed an XML-based SA-AC

language for specifying flexible SA-AC policies in S-
ADS systems based on our SA-AC model. We believe
our SA-AC policy specification language is simpler
and easy-to-use than XACML [2], which intends to be
a common language for expressing security policy.
Moreover, the policies specified by SA-AC policy
specification language can be automatically translated
into XACML and is interoperable with XACML.

An SA-AC policy specification includes the
following parts:
• User elements, which specify the ID, name and

detail description of each user.
• Role elements, which specify the ID, name and the

parent role identity of each role.
• Permission elements, which specify the ID, name

and detailed description of each permission.
• Situation elements, which specify the ID, logical

expression and the detail description of a situation
expression. In order to make the policy easy-to-
understand, we use the same notation for situation
expressions in [26] and include them in SA agents.
The situation ID will be referred as situation
expression identity in the situation-aware user-role
assignments and role-permission assignments.

• SEUR elements, which specify the situation
expressions related to a user-role assignment.
When all the situation expressions are true under

the current situation, the specified user in SEUR
could activate the specified role. Different SEUR
elements with the same user and same role will be
disjunctively evaluated in the policy evaluation.

• SERP elements, which specify the situation
expressions related to a role-permission
assignment. When all the situation expressions are
true under current situation, the users with the
specified role could invoke the specified
permission. Different SERP elements with the
same role and same permission will be
disjunctively evaluated in the policy evaluation.

Negation operator can be applied to the situation
expressions to specify negative access policies. Figure
3 shows a fragment of the XML schema that defines
our SA-AC specification language.
<?xml version="1.0" encoding="utf-8" ?>
<xs:schema targetNamespace="http://dpse.asu.edu/SAACPolicySchema.xsd" …>
<xs:element name="SAACPolicies">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Title" type="xs:string" minOccurs="0" />
 <xs:element name="user" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="UserID" type="xs:string" minOccurs="1" />
 …
 <xs:element name="Role" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="RoleID" type="xs:string" minOccurs="1" />

 …
 <xs:element name="Permission" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="PermissionID" type="xs:string" minOccurs="1" />
 …
 <xs:element name="Situation" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SituationID" type="xs:string" minOccurs="1" />
 …
 <xs:element name="SEUR" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="SituationID" type="xs:string" minOccurs="0"
 maxOccurs="unbounded" />
 <xs:element name="UserID" type="xs:string" minOccurs="1" maxOccurs="1" />
 <xs:element name="RoleID" type="xs:string" minOccurs="1" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="SERP" minOccurs="1" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 … //similar to SEUR element
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Figure 3. A fragment of the XML Schema of
SA-AC policy specification language

6. Our Approach to Enforcing SA-AC
policies in S-ADS

Our approach is middleware-based and more efficient
and error-prone in enforcing SA-AC policies in S-ADS
because the enforcement can be systematically
implemented using a situation-aware middleware [26].
We will discuss this in subsequent subsections.

6.1. Components for Enforcing SA-AC

As shown in Figure 4, the following components

are implemented in the situation-aware middleware for
S-ADS systems to support the enforcement of SA-AC
policies:

Figure 4. Overview of our approach to
enforcing SA-AC in S-ADS

 (1) SA-AC Agents: SA-AC agents are developed for

evaluating access control policies and returning
access decisions for secure S-ADS. Given the
inputs for access control policies, requested access
permission and the security properties of the access
requester, SA-AC agents return the access decision
under current situation according to the SA-AC
model described in Section 4.

 At run-time, SA-AC agents manage user-role
and role-permission assignments as state machines.
State transitions are triggered by changes in
situations, which are monitored by an SA agent.
The current state of the state machine defines the
active role for each user and the active permissions
for each role.

(2) Situation-Awareness (SA) Agent: SA agents are
developed based our middleware for ubiquitous
computing, RCSM [25, 26]. During runtime, SA-
AC agents initially register the situations involved
in the policies with SA agents, which continuously
update changes of these situations to the SA-AC
agents for dynamically activating the situation-
aware user-role and role-permissions assignments.

(3) Service Registries: Service registries are distributed
over all the computing nodes. A discovery protocol

SA-AC AgentSA Agent

ServicesUser Running user
application

Update
situation changes

User
Application

SA-AC Agents

Service
Registry

the SA-AC enabled
situation-awareness middleware

S
WSW

S
WSP

is implemented in RCSM to discover the available
services in autonomous community [24].

(4) Service Proxies (SP): A service proxy is designed
to handle the security information related to any
service requests from the user. An SP generator,
called SPGen, is provided to generate service
proxies based on service specifications for user
applications. The generated proxy will
automatically bind a service request to the user’s
security properties, such as digital certificates that
have been authenticated by other members in the
autonomous community in advance.

(5) Service Wrappers (SW): A service wrapper is a
software entity guarding the access to the original
services by interacting with SA-AC agents and
other security services (e.g. authentication) before
responding to any access request. A service
wrapper generator, called SWGen, is provide to
service providers during service deployment, to
generate a SW for protecting the service.
At runtime, any service request req from the user

application to the service will be bound to the user
identity by the SP. Upon receiving the request, the SW
and the SA-AC agents will follow the following
process as to enforce the access policies:

(a) The SW uses service discovery mechanism in RCSM
to discover the nearest SA-AC agent. If no SA-AC
agent is discovered, goto (f).

(b) The SW initiate and send an policy evaluation request
to the discovered SA-AC agent regarding req

(c) The discovered SA-AC agent broadcast a policy
discovery request to all SA-Agents through a secure
channel for initializing a policy discovery process to
find all applicable access policies related to the
request req and the user.

(d) The nearest SA-AC agent determines whether the
request req should be fulfilled according to the user
identity and all the discovered access policies. If not,
goto (f).

(e) Forward the request req to the service and send result
from the service to the client. Goto (g).

(f) Deny the service request
(g) End of handling the service request.
In (d), the SA-AC agent will return the access

permission decision for the users under the current
situation according to our SA-AC model.

6.2. Enforcing SA-AC in S-ADS

Based on the above middleware components
developed in RCSM, SA-AC policies in an S-ADS can
be enforced by the following process:
(1) Specify situation-aware access policy. Using our

SA-AC specification language, users of S-ADS
can specify their access policies for securing the
services and their applications. Send the specified

access policies (as an XML document) to a local
SA-AC agent or another SA-AC agent available
on some computing nodes in the autonomous
community through a secure channel. The access
policies can be specified during development and
updated at runtime.

(2) Generate and deploy service wrappers. Service
providers use SWGen to generate SWs and deploy
the generated SWs on the service hosts where the
services are hosted. SWGen will remove the
direct access to the services. After the
deployment, only SWs can access the
corresponding services.

(3) Generate service proxies. Developers of
applications use SPGen to generate an SP for the
user application. SPGen will automatically
intercept users’ service requests and binds them
to users’ security properties.

(4) Run user application When a user application is
started, the SP is automatically loaded and
intercepts all service requests from the user
application to the service. Upon receiving the
service request, the SW will validate the security
information and enforce access control policies
by communicating with SA-AC agents as
described in Steps (a)-(g)

Among these four steps, step 2 to 4 can be
automated using SPGen and SWGen. Step 1 needs to
be specified manually. In Section 7 we will present an
example to show how to follow these steps.

7. SA-AC for the Collaborative Learning
Example

To illustrate our SA-AC approach, we have

implemented SA-AC for the example described in
Section 2.

The first step is to specify the SA-AC policies
described in Section 2 using our SA-AC specification
language in terms of users, roles, permissions, situation
expressions, situation-aware user-role assignments, and
situation-aware role-permission assignments for each
group (or autonomous community). Figure 5 shows the
SA-AC policies for policies a)-c) of one group in the
example described in Section 2.

<?xml version="1.0" encoding="utf-8" ?>
<SAACPolicies xmlns="http://dpse.asu.edu/SAACPolicies"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://dpse.asu.edu/SAACPolicies
 http://dpse.asu.edu/SAACPolicySchema.xsd">
 <Title>SA AC Policies for the Collaborative Learning Example</Title>
 <Description> This specification represents the following policies for the group
with Stephen S. Yau as the instructor, Yisheng Yao and Vageesh Banga as the two
of the group members: a) Only when the user with the role of SQA is in the Smart
Classroom during the class time, he/she can create a group discussion by calling
CreateGroup of ogm. b) When the SQA is not available in the group, the backup SQA

can take place for SQA. c) Only during the class time, the user with the role of the
instructor can join any group discussion.
 </Description>
 <User>
 <UserID>ssyau</UserID> <UserName>Stephen S Yau</UserName> …
 </User>
 <User>
 <UserID>syao</UserID> <UserName>Yisheng Yao</UserName> …
 </User>
 <User>
 <UserID>vbanga</UserID> <UserName>Vageesh Banga</UserName> …
 </User>
 <!-- We omit other users here to save page space here -->

 <Role>
 <RoleID>R1</RoleID> <RoleName>Instructor</RoleName> </Role>
 <Role>
 <RoleID>R2</RoleID> <RoleName>SQA</RoleName> </Role>
 <!—We omit other roles to save space here -->

 <Permission>
 <PermissionID>Podm</PermissionID>
 <PermName>ManageDocument</PermName>
 <Description> … </Description> </Permission>
 <Permission>
 <PermissionID>Pogm.create</PermissionID>
 … </Permission>
 <Permission>
 <PermissionID>Pogm.schedule</PermissionID> …</Permission>
 <!—We omit other roles to save space here -->

 <!-- Situation expressions are presented for users to easily understand the policy.
 They are just copied from the SA specifications in SA agents -->
 <Situation>
 <SituationID>S1</SituationID>
 <SituationExpression>(-5,0)[Location="BYENG468"]</SituationExpression>
 <Decription>During last five time units, user's location is in the Smart
 Classroom BYENG468</Decription> </Situation>
 <Situation>
 <SituationID>S2</SituationID>
 <SituationExpression>[Time in (9:00am, 10:15am)]</SituationExpression>
 <Decription>Now, the time is class time for CSE461 (from 9:00am to

 10:15am) </Decription> </Situation>
 <Situation>
 <SituationID>S3</SituationID>
 <SituationExpression>S1 and S2</SituationExpression>
 <Decription>Current the user in the Smart Classroom for the course
 CSE461</Decription> </Situation>
 <Situation>
 <SituationID>S4</SituationID>
 <SituationExpression>(-5,0)[john in Neiborlist]</SituationExpression>
 <Decription>John is not in the user's neiborlist.</Decription>
 </Situation>
 <!—we omit other situations to save space here -->

 <!-- specify the policy a), b) and c) listed in Section 2,
 omit other policies to save space-->
 <SEUR> <SituationID>S3</SituationID> <UserID>john</UserID>
 <RoleID>R2</RoleID> </SEUR>
 <SEUR> <SituationID>S4</SituationID> <UserID>vbanga</UserID>
 <RoleID>R2</RoleID> </SEUR>
 <SEUR> <SituationID>S3</SituationID> <UserID>ssyau</UserID>
 <RoleID>R1</RoleID> </SEUR>
 <SERP> <SituationID>S3</SituationID> <RoleID>R2</RoleID>
 <PermissionID>Pogm.create</PermissionID> </SERP>
 <SERP> <SituationID>S3</SituationID> <RoleID>R1</RoleID>
 <PermissionID>Podm</PermissionID> </SERP>
</SAACPolicies>

Figure 5. SA-AC policies for the example

By applying four simple situation expressions in the

situation-aware user-role and role-permission
assignments, we can express policies a)-c) easily as
shown in Figure 5. For simplicity, we omitted detail
specification for other policies like policies d) and e),
which can also be specified by using the SA-AC policy
specification language, since the action history can be
specified as situation expressions. As emphasized
before, we specify situation expression in SA-AC
policies only for the purpose of easy understanding.
The SA-AC agents will not process these situation
expressions. What SA-AC agents need to do is to let
the SA agents know, which situation expressions
(identified by the <SituationID> elements) they are
interested in.

After the policies are specified for a group, they can
be sent to every SA-AC agent available inside the
group. Then the policies can be enforced following
Steps (2) to (4) described in Section 6.1.
• Generate service wrappers all services listed in

Section 2 and deploy these service wrappers and
service on corresponding PDAs.

• Generate service proxies for user applications
• During runtime, the service wrappers will enforce

these access control policies by discovering a
nearest SA-AC agent and initiating and sending
policy evaluation requests to the discovered SA-
AC agent. The SA-AC agent will initiate a policy
discovery process to discover all applicable
policies for the service request and evaluate the
policies and return the policy evaluation result to
the corresponding service wrapper.

As policy discovery and evaluation is performed on
the fly, policies can be updated and enforced on the fly.
For example, when all the OMs need to get together for
negotiating possible outsourcing contracts, a new
autonomous community is formed. New policies for
this group can be specified and enforced immediately.

8. Conclusion

In this paper, we have presented a situation-aware

access control approach (SA-AC) for service-oriented
autonomous decentralized systems. Because of the
situation-awareness feature, this approach can
dynamically enforce very flexible access policies as
shown in the implementation of our example. A
middleware-based approach is developed for easily
enforcing SA-AC policies in S-ADS systems.
Currently, we are developing domain ontologies for
access control policies, which will greatly improve the
interoperability among our SA-AC model and other
access-control models. Additional work needs to be
done in this area: Techniques for checking the

consistency of SA-AC policies and handling the
incompleteness of SA-AC policies. The consistency of
SA-AC policies is needed for ensuring correctness of
policy decisions. Incompleteness of SA-AC policies
needs to be dealt with because it is often impossible for
users to define complete SA-AC policies in advance
due to the dynamics of S-ADS.

Acknowledgment

This work is supported in part by National Science

Foundation under grant numbers ANI 0123980 and
ITR-CYBERTRUST 0430565. We would like to thank
Dazhi Huang and Huan Jin for many helpful
discussions.

References

[1] G.-J. Ahn and R. Sandhu, "Role-based authorization
constraints specification," ACM Trans. on Information and
System Security (TISSEC), vol. 3(4), 2000, pp. 207--226.
[2] A. Anderson, "eXtensible Access Control Markup
Language Version 2.0 (working draft)," 2004.
[3] E. Bertino, P. A. Bonatti and E. Ferrari, "TRBAC: A
temporal role-based access control model," ACM Trans. on
Information and System Security (TISSEC), vol. 4(3), 2001,
pp. 191--233.
[4] E. Bertino, E. Ferrari and V. Atluri, "The specification
and enforcement of authorization constraints in workflow
management systems," ACM Trans. on Information and
System Security (TISSEC), vol. 2(1), 1999, pp. 65--104.
[5] D. W. Chadwick and A. Otenko, "The PERMIS X.509
role based privilege management infrastructure," Proc. 7th
ACM Symp. on Access Control Models and Ttechnologies,
2002, pp. 135--140.
[6] D. G. Cholewka, R. A. Botha and J. H. P. Eloff, "A
Context-sensitive Access Control Model and Prototype
Implementation," Proc. IFIP TX 11 16th Annual Working
Conf. on Information Security, 2000, pp. 53-66.
[7] A. Corradi, R. Montanari and D. Tibaldi, "Context-based
Access Control for Ubiquitous Service Provisioning," Proc.
28th Annual Int'l Computer Software and Application Conf.
(COMPSAC), 2004, pp. 444-451.
[8] M. J. Covington, P. Fogla, Z. Zhan and M. Ahamad, "A
context-aware security architecture for emerging
applications," Proc. 18th Annual Int'l Computer Security
Applications Conf., 2002, pp. 249-258.
[9] Y. G. Desmedt, "Threshold cryptography," Proc. the 3rd
Symp. on State and Progress of Research in Cryptography,
1993, pp. 110-122.
[10] J. Hoagland, R. Pandey and K. N. Levitt, "Security
Policy Specification Using a Graphical Approach," Technical
Report CSE-98-3, University of California, Davis, 1998.
[11] IBM, "IBM Web Services architecture overview," 2004.
[12] W. Johnston, S. Mudumbai and M. Thompson,
"Authorization and attribute certificates for widely
distributed access control," Proc. 7th IEEE Int'l Workshops
on Enabling Technologies: Infrastructure for Collaborative
Enterprises, 1998, pp. 340-345.

[13] J. Joshi, "A Generalized Temporal Role Based Access
Control Model for Developing Secure Systems," Ph. D.
Dissertation, CERIAS, Purdue University, 2003.
[14] J. Kong, P. Zerfos, H. Luo, S. Lu and L. Zhang,
"Providing robust and ubiquitous security support for mobile
ad-hoc networks," Proc. 9th Int'l Conf. on Network Protocols,
2001, pp. 251-260.
[15] A. Kumar, N. Karnik and G. Chafle, "Context sensitivity
in role-based access control," ACM SIGOPS Operating
Systems Review, vol. 36(3), 2002, pp. 53-66.
[16] K. Mori, "Autonomy and community," Proc. 6th Int'l
Symp. on Autonomous Decentralized Systems, 2003, pp. 330.
[17] OASIS, "Security Assertion Markup Language
(Specification 1.1)," 2003.
[18] T. Ono, N. Kaji, Y. Horikoshi, H. Kuriyama, K. Ragab
and K. Mori, "Autonomous decentralized community
construction technology to assure quality of services," Proc.
10th IEEE Int'l Workshop on Future Trends of Distributed
Computing Systems, 2004, pp. 299-305.
[19] M. P. Papazoglou, "Service-oriented computing:
concepts, characteristics and directions," Proc. 4th Int'l Conf.
on Web Information Systems Eng., 2003, pp. 3-12.
[20] L. Pearlman, V. Welch, I. Foster, C. Kesselman and S.
Tuecke, "A community authorization service for group
collaboration," Proc. 3rd Int'l Workshop on Policies for
Distributed Systems and Networks, 2002, pp. 50-59.
[21] K. Ragab, N. Kaji and K. Mori, "Service-oriented
autonomous decentralized community communication
technique for a complex adaptive information system," Proc.
IEEE/WIC Int'l Conf. on Web Intelligence, 2003, pp. 323-
329.
[22] R. S. Sandhu, E. J. Coyne, H. L. Feinstein and C. E.
Youman, "Role-based access control models," Computer,
vol. 29(2), 1996, pp. 38-47.
[23] S. S. Yau, S. K. S. Gupta, F. Karim, S. I. Ahamed, Y.
Wang and B. Wang, "Smart Classroom: Enhancing
Collaborative Learning Using Pervasive Computing
Technology," Proc. 6th WFEO World Congress on
Engineering Education & 2nd ASEE Int'l Colloquium on
Engineering Education, 2003, pp.
[24] S. S. Yau and F. Karim, "An energy-efficient object
discovery protocol for context-sensitive middleware for
ubiquitous computing," IEEE Trans. on Parallel and
Distributed Systems, vol. 14(11), 2003, pp. 1074-1085.
[25] S. S. Yau, F. Karim, Y. Wang, B. Wang and S. K. S.
Gupta, "Reconfigurable context-sensitive middleware for
pervasive computing," IEEE Pervasive Computing, vol. 1(3),
2002, pp. 33-40.
[26] S. S. Yau, Y. Wang and F. Karim, "Development of
situation-aware application software for ubiquitous
computing environments," Proc. 26th Annual Int'l Computer
Software and Applications Conf. (COMPSAC), 2002, pp.
233-238.
[27] L. Zhou and Z. J. Haas, "Securing ad hoc networks,"
IEEE Network, vol. 13(6), 1999, pp. 24-30.

